Flavonol–serum albumin complexation. Two-electron oxidation of flavonols and their complexes with serum albumin

(Note: The full text of this document is currently only available in the PDF Version )

Olivier Dangles, Claire Dufour and Stephan Bret


Abstract

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) and quercetin derivatives (3-methylquercetin, isoquercitrin, rutin) are strong polyphenolic antioxidants abundant in plants and in the human diet. Recent investigations have shown that significant concentrations of albumin-bound quercetin conjugates are present in the plasma of humans fed a quercetin-rich diet.

In this work, binding of quercetin and quercetin glycosides to bovine serum albumin (BSA) is quantitatively investigated by fluorescence spectroscopy. The strong fluorescence enhancement of quercetin upon binding points to the fact that a significant fraction of quercetin adopts a pyrylium-like structure in the complex. On the other hand, the observation of a very efficient quenching of tryptophan fluorescence by quercetin is consistent with a binding occurring in the IIA domain.

Flavonoid-derived quinones may be formed upon quenching of reactive oxygen species by flavonoids (antioxidant activity). In this work, the quinones are conveniently formed upon periodate oxidation of the selected flavonoids in methanol and in aqueous buffers with and without BSA. A kinetic investigation by UV–visible spectroscopy shows that albumin-bound flavonoids are oxidized as quickly as free flavonoids. Interestingly, the quercetin quinone, which is merely detectable in the absence of BSA because of fast solvent addition, is efficiently stabilized in the complex by charge transfer interactions (pH 9). No evidence for quercetin–BSA conjugates could be found, thus showing that water addition (and subsequent degradation) remains the sole significant pathway of quinone transformation in the complex.


References

  1. The Flavonoids, Advances in Research since 1986, ed. J. B. Harborne, Chapman and Hall, London, 1994 Search PubMed.
  2. (a) E. Middleton Jr. and C. Kandaswami, in The Flavonoids, Advances in Research since 1986, ed. J. B. Harborne, Chapman and Hall, London, 1994, p. 619 Search PubMed; (b) Flavonoids in Health and Disease, eds. C. A. Rice-Evans and L. Packer, M. Dekker, New York, 1997 Search PubMed; (c) P. Cos, L. Ying, M. Calomme, J. P. Hu, K. Cimanga, B. Van Poel, L. Pieters, A. J. Vlietinck and D. Vanden Berghe, J. Nat. Prod., 1998, 61, 71 CrossRef CAS; (d) J. R. S. Hoult, M. A. Moroney and M. Paya, Methods Enzymol., 1994, 234, 443 CAS; (e) I. Morel, G. Lescoat, P. Cillard and J. Cillard, Methods Enzymol., 1994, 234, 437 CrossRef CAS; (f) W. F. Hodnick, D. L. Duval and R. S. Pardini, Biochem. Pharmacol., 1994, 47, 573 CrossRef CAS; (g) N. Cotelle, J.-L. Bernier, J.-P. Catteau, J. Pommery, J.-C. Wallet and E. M. Gaydou, Free Radical Biol. Med., 1996, 20, 35 CrossRef CAS; (h) G. Cao, E. Sofic and R. L. Prior, Free Radical Biol. Med., 1997, 22, 749 CrossRef CAS.
  3. (a) S. Steenken and P. Neta, J. Phys. Chem., 1982, 86, 3661 CrossRef CAS; (b) W. Bors and M. Saran, Free Radical Res. Commun., 1987, 2, 289 Search PubMed; (c) W. Bors, W. Heller, C. Michel and M. Saran, Methods Enzymol., 1990, 186, 343 CrossRef CAS; (d) W. Bors, C. Michel and M. Saran, Methods Enzymol., 1994, 234, 420 CAS; (e) S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic and M. G. Simic, J. Am. Chem. Soc., 1994, 116, 4846 CrossRef CAS; (f) S. V. Jovanovic, S. Steenken, Y. Hara and M. G. Simic, J. Chem. Soc., Perkin Trans. 2, 1996, 2497 RSC; (g) W. Bors and M. Saran, Free Radical Res. Commun., 1987, 2, 289 Search PubMed.
  4. (a) N. Salah, N. J. Miller, G. Paganga, L. Tijburg, G. P. Bolwell and C. Rice-Evans, Arch. Biochem. Biophys., 1995, 322, 339 CrossRef CAS; (b) J. A. Vinson, J. Jang, Y. A. Dabbagh, M. M. Serry and S. Cai, J. Agric. Food Chem., 1995, 43, 2798 CrossRef CAS; (c) J. Torel, J. Cillard and P. Cillard, Phytochemistry, 1986, 25, 383 CrossRef CAS; (d) M. Foti, M. Piattelli, M. T. Baratta and G. Ruberto, J. Agric. Food Chem., 1996, 44, 497 CrossRef CAS; (e) K. Ioku, T. Tsushida, Y. Takei, N. Nakatani and J. Terao, Biochim. Biophys. Acta, 1995, 1234, 99 CrossRef CAS.
  5. (a) M. G. L. Hertog, E. J. M. Feskens, P. C. H. Hollman, M. B. Katan and D. Kromhout, The Lancet, 1993, 342, 1007 Search PubMed; (b) D. S. Leake, In Phytochemistry of Fruit and Vegetables, eds. F. A. Tomas-Barberan and R. J. Robins, Clarendon Press, Oxford, 1997, p. 287 Search PubMed.
  6. (a) C. Manach, C. Morand, O. Texier, M.-L. Favier, G. Agullo, C. Demigné, F. Régérat and C. Rémésy, J. Nutr., 1995, 125, 1911 CAS; (b) C. Manach, O. Texier, F. Régérat, G. Agullo, C. Demigné and C. Rémésy, Nutr. Biochem., 1996, 7, 375 Search PubMed; (c) D. W. Boulton, U. K. Walle and T. Walle, J. Pharm. Pharmacol., 1998, 50, 243 Search PubMed.
  7. C. Manach, C. Morand, V. Crespy, C. Demigné, O. Texier, F. Régérat and C. Rémésy, FEBS Lett., 1998, 426, 331 CrossRef CAS.
  8. (a) M. G. Peters, Angew. Chem., Int. Ed. Engl., 1989, 28, 555 CrossRef; (b) Y. J. Abul-Hajj, K. Tabakovic and I. Tabakovic, J. Am. Chem. Soc., 1995, 117, 6144 CrossRef CAS.
  9. K. A. Connors, Binding Constants, The Measurement of Molecular Complex Stability, Wiley, New York, 1987 Search PubMed.
  10. T. Peters, Adv. Protein Chem., 1985, 37, 161 CAS.
  11. P. J. Sadler and A. Tucker, Eur. J. Biochem., 1992, 205, 631 CAS.
  12. X. M. He and D. C. Carter, Nature, 1992, 358, 209 CrossRef.
  13. A. Sytnik and I. Litvinyuk, Proc. Natl. Acad. Sci. USA, 1996, 93, 12959 CrossRef CAS.
  14. P. K. Agrawal and H.-J. Schneider, Tetrahedron Lett., 1983, 24, 177 CrossRef CAS.
  15. O. S. Wolfbeis, M. Begum and H. Geiger, Z. Naturforsch., 1984, 39b, 231 Search PubMed.
  16. (a) R. Schipfer, O. S. Wolfbeis and A. Knierzinger, J. Chem. Soc., Perkin Trans. 2, 1981, 1443 RSC; (b) O. S. Wolfbeis, A. Knierzinger and R. Schipfer, J. Photochem., 1983, 21, 67 CrossRef CAS.
  17. (a) M. Itoh, K. Tokumura, Y. Tanimoto, Y. Okada, H. Takeuchi, K. Obi and I. Tanaka, J. Am. Chem. Soc., 1982, 104, 4146 CrossRef CAS; (b) M. Itoh and T. Adachi, J. Am. Chem. Soc., 1984, 106, 4320 CrossRef CAS.
  18. (a) A. T. Diplock, in Free Radical Damage and its Control, New Comprehensive Biochemistry, vol. 28, eds. C. A. Rice-Evans and R. H. Burdon, Elsevier, Amsterdam, 1994, p. 113 Search PubMed; (b) R. A. Larson, Naturally Occurring Antioxidants, Lewis Publishers, CRC Press LLC, Boca Raton, 1997 Search PubMed; (c) C. A. Rice-Evans, in Free Radical Damage and its Control, New Comprehensive Biochemistry, vol. 28, eds. C. A. Rice-Evans and R. H. Burdon, Elsevier, Amsterdam, 1994, p. 131 Search PubMed; (d) H. Sies, Angew. Chem., Int. Ed. Engl., 1986, 25, 1058 CrossRef.
  19. O. Dangles, C. Dufour and G. Fargeix, J. Chem. Soc., Perkin Trans. 2, submitted Search PubMed.
  20. S. W. Weidman and E. T. Kaiser, J. Am. Chem. Soc., 1966, 88, 5820 CrossRef CAS.
  21. (a) M. Utaka and A. Takeda, J. Chem. Soc., Chem. Commun., 1985, 1824 RSC; (b) M. A. Smith, R. A. Webb and L. J. Cline, J. Org. Chem., 1965, 30, 995 CAS.
  22. G. M. Escandar and L. F. Sala, Can. J. Chem., 1991, 69, 1994 CAS.
  23. (a) A. Nishinaga, T. Tojo, H. Tomita and T. Matsuura, J. Chem. Soc., Perkin Trans. 1, 1979, 2511 RSC; (b) C. Tournaire, M. Hocquaux, I. Beck, E. Oliveros and M.-T. Maurette, Tetrahedron, 1994, 50, 9303 CrossRef CAS.
  24. V. Massey and S. Ghisla, Ann. N. Y. Acad. Sci., 1974, 227, 446.
  25. B. Valeur, in Molecular Luminescence Spectroscopy, Part 3, Vol. 77, ed. S. G. Schulman, Wiley and Sons, New York, 1993, p. 25 Search PubMed.
  26. W. S. Pierpoint, Biochem. J., 1969, 112, 619 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.