Photodynamics of the Paterno–Büchi cycloaddition of stilbene to quinone. Unusual modulation of electron-transfer kinetics by solvent and added salt

(Note: The full text of this document is currently only available in the PDF Version )

Stephan M. Hubig, Duoli Sun and Jay K. Kochi


Abstract

Oxetanes are produced in the Paterno–Büchi cycloaddition of stilbene (S) to quinone (Q) via an efficient photoinduced electron transfer. Kinetics analysis of the time-resolved absorption spectra over three distinctive (ps, ns, µs) timescales establishes the coupling (kC) of the initially formed ion-radical pair 3[S+˙, Q˙] to the 1,4-biradical ˙SQ˙ as the critical step toward oxetane formation. The (rather slow) rate constant of kC ≤ 107 s–1 in acetonitrile must compete with other faster decay pathways of the ion pair involving ionic separation, ion exchange (with added salt) and back electron transfer. As such, solvent polarity and donicity as well as added salts play an unusually prominent role in modulating the ion-pair microdynamics. Donor–acceptor complexation of the photoexcited quinone with the solvent and cistrans isomerization of (Z[hair space])-stilbene must also be considered in the overall photodynamics of electron transfer.


References

  1. J.-H. Xu, L.-C. Wang, J.-W. Xu, B.-Z. Yan and H.-C. Yuan, J. Chem. Soc., Perkin Trans. 1, 1994, 571 RSC.
  2. D. Sun, S. M. Hubig and J. K. Kochi, J. Org. Chem., in the press Search PubMed.
  3. E. Paterno and G. Chieffi, Gazz. Chim. Ital., 1909, 39, 341; G. Büchi, C. G. Inman and E. S. Lipinsky, J. Am. Chem. Soc., 1954, 76, 4327 CrossRef CAS.
  4. Spectroscopic studies on various Paterno–Büchi couplings have revealed several reactive intermediates including exciplexes,5,6ion-radical pairs,6–10 and 1,4 biradicals.8–12.
  5. R. A. Caldwell, D. C. Hrncir, T. Muñoz, Jr. and D. J. Unett, J. Am. Chem. Soc., 1996, 118, 8741 CrossRef CAS; R. A. Caldwell, G. W. Sovocool and R. P. Gajewski, J. Am. Chem. Soc., 1973, 95, 2549 CrossRef CAS; N. E. Schore and N. J. Turro, J. Am. Chem. Soc., 1975, 97, 2482 CrossRef CAS.
  6. S. Hu and D. C. Neckers, J. Org. Chem., 1997, 62, 6820 CrossRef CAS.
  7. J. Gersdorf, J. Mattay and H. Görner, J. Am. Chem. Soc., 1987, 109, 1203 CrossRef CAS.
  8. S. C. Freilich and K. S. Peters, J. Am. Chem. Soc., 1985, 107, 3819 CrossRef CAS; J. Am. Chem. Soc., 1981, 103, 6255 Search PubMed.
  9. A. G. Griesbeck, H. Mauder and S. Stadtmüller, Acc. Chem. Res., 1994, 27, 70 CrossRef CAS.
  10. G. Eckert and M. Goez, J. Am. Chem. Soc., 1994, 116, 11999 CrossRef CAS.
  11. D. I. Schuster, G. Lem and N. A. Kaprinidis, Chem. Rev., 1993, 93, 3 CrossRef CAS.
  12. S. Hu and D. C. Neckers, J. Org. Chem., 1997, 62, 564 CrossRef CAS.
  13. For reviews, see: G. Jones II, in Organic Photochemistry, ed. A. Padwa, Dekker, New York, 1981, vol. 5, p. 1 Search PubMed; A. G. Griesbeck, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. M. Horspool and P.-S. Song, CRC Press, Boca Raton, FL, 1995, p. 522 Search PubMed.
  14. R. Rathore, S. M. Hubig and J. K. Kochi, J. Am. Chem. Soc., 1997, 119, 11468 CrossRef CAS and references therein.
  15. E. Bosch, S. M. Hubig and J. K. Kochi, J. Am. Chem. Soc., 1998, 120, 386 CrossRef CAS.
  16. R. Gschwind and E. Haselbach, Helv. Chim. Acta, 1979, 62, 941 CAS.
  17. S. M. Hubig, T. M. Bockman and J. K. Kochi, J. Am. Chem. Soc., 1997, 119, 2926 CrossRef CAS.
  18. The reduction potential of the triplet quinone is E*red= 2.15 V vs. SCE. See ref. 14.
  19. The oxidation (peak) potential of stilbene is Epox≅ 1.56 V vs. SCE. See ref 23..
  20. The triplet ion-radical pair in eqn. (2) then follows various reaction pathways including back-electron transfer,21a,b ion dissociation,21c and the critical coupling to the triplet 1,4-biradical2 which subsequently undergoes ring closure to form the Wnal oxetane product.8–12.
  21. (a) K. S. Peters, Adv. Electron Transfer Chem., 1994, 4, 27 Search PubMed; (b) M. A. Fox, Adv. Photochem., 1986, 13, 237 Search PubMed; (c) H. Knibbe, D. Rehm and A. Weller, Ber. Bunsenges. Phys. Chem., 1968, 72, 257 Search PubMed.
  22. The chloranil anion radical absorbs at λmax= 450 nm and λmax= 320 nm. See J. J. André and G. Weill, Mol. Phys., 1968, 15, 97 Search PubMed.
  23. The stilbene cation radical absorbs at λmax= 480 and 769 nc. See: F. D. Lewis, A. M. Bedell, R. E. Dykstra, J. E. Elbert, I. R. Gould and S. Farid, J. Am. Chem. Soc., 1990, 112, 8055 Search PubMed; T. Shida, Electronic Absorption Spectra of Radical Ions, Elsevier, New York, 1988, p. 112 CrossRef CAS.
  24. C. G. Hatchard and C. A. Parker, Proc. R. Soc. London, Ser. A, 1956, 235, 518 Search PubMed; See also: J. G. Calvert and J. N. Pitts, Jr., Photochemistry, Wiley, New York, 1996, p. 786 Search PubMed.
  25. C. Reichardt, Solvent EVects in Organic Chemistry, Verlag Chemie, New York, 1979 Search PubMed.
  26. R. C. Weast, CRC Handbook of Chemistry and Physics, 53rd edn., CRC Press, Boca Raton, FL, 1975, p. E73 Search PubMed.
  27. D. Bryce-Smith, B. F. Connett and A. Gilbert, J. Chem. Soc. (B), 1968, 816 RSC; M. A. Slifkin, Spectrochim. Acta, Part A, 1969, 25, 1037 CrossRef CAS.
  28. H. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703 CrossRef CAS; W. B. Person, J. Am. Chem. Soc., 1965, 87, 167 CrossRef CAS.
  29. J. N. Murrell, J. Am. Chem. Soc., 1954, 81, 5037.
  30. J. W. Moore and R. G. Pearson, Kinetics and Mechanism, 3rd edn., Wiley, New York, 1981, p. 239 Search PubMed.
  31. DiVusion-controlled reactions occur with second-order rate constants of ∼1010M–1s–1. See ref. 30.
  32. T. Asahi and N. Mataga, J. Phys. Chem., 1989, 93, 6575 CrossRef CAS; 1991, 95, 1956.
  33. E. F. Hilinki, J. M. Masnovi, J. K. Kochi and P. M. Rentzepis, J. Am. Chem. Soc., 1984, 106, 8071 CrossRef CAS.
  34. S. Ojima, H. Miyasaka and N. Mataga, J. Phys. Chem., 1990, 94, 4147 CrossRef CAS.
  35. H. Kobashi, M.-A. Funabashi, T. Kondo, T. Morita, T. Okada and N. Mataga, Bull. Chem. Soc. Jpn., 1984, 57, 3557 CAS; H. Kobashi, T. Okada and N. Mataga, Bull. Chem. Soc. Jpn., 1986, 59, 1975 CAS; G. Jones II, W. A. Haney and X. T. Phan, J. Am. Chem. Soc., 1988, 110, 1922 CrossRef CAS.
  36. (a) The rate constant for H-atom abstraction was determined as kH= 2.9 × 106s–1; (b) It is not clear at this stage why the hydrogen abstraction is suppressed in the presence of high amounts of inert salt.
  37. S. Ojima, H. Miyasaka and N. Mataga, J. Phys. Chem., 1990, 94, 7534 CrossRef CAS.
  38. (a) The coupling (kc) of chloranil anion radical stilbene cation radical to the 1,4-briadical intermediate represents the first (rate-determining) step toward oxetane formation by analogy with the biradical intermediates observed in the Paterno–Buuml;chi coupling of benzoquinone and styrene. See: K. Maruyama, T. Otsuki and S. Tai, J. Org. Chem., 1985, 50, 52 Search PubMed; K. Maruyama and H. Imahori, J. Org. Chem., 1989, 54, 2692 CrossRef CAS Note that in our study no further transient intermediates have been detected upon the decay of the ion-radical pairs; (b) The coupling rate constant of kC≤ 107s–1 in highly polar acetonitrile is substantially slower than that in (nonpolar) dioxane solution (kC≈ 108 s–1),2 which is mainly due to the diVerent solvation (and stabilization) of the ion-radical pairs in the two solvents. [Note also that the rate constant in dioxane solution was derived by a diVerent method, viz. the quantitative evaluation of the competition between back electron transfer and coupling, since no dissociation of the ion pairs was observed.]2.
  39. Free-ion yields close to unity imply that the dissociation rates are orders of magnitude faster than back electron transfer.14,16.
  40. S. M. Hubig, W. Jung and J. K. Kochi, J. Org. Chem., 1994, 59, 6233 CrossRef CAS; T. Yabe and J. K. Kochi, J. Am. Chem. Soc., 1992, 114, 4491 CrossRef CAS.
  41. The quantum yield for oxetane formation is determined by the competition of all the decay pathways in Scheme 1, i.e. Φ=kc/(kc+kBET+kdiss+ksalt[salt]). By taking ksalt[salt]≫kBET or kdiss, the quantum yield reduces to: Φ=kc/(kc+ksalt[salt]). Thus, the difference in Φ for [salt]= 0 and [salt]= 0. 1 M in Table 1 (entries 4 and 8) leads to ksalt= 170 ×kc.
  42. F. D. Lewis, J. R. Petisce, J. D. Oxman and M. J. Nepras, J. Am. Chem. Soc., 1985, 107, 203 CrossRef CAS; Y. Kuriyama, H. Sakuragi, K. Tokumaru, Y. Yoshida and S. Tagawa, Bull. Chem. Soc. Jpn., 1993, 66, 1852 CAS; A. Corma, V. Fornés, H. Garcia, M. A. Miranda, J. Primo and M. Sabater, J. Am. Chem. Soc., 1994, 116, 2276 CrossRef CAS.
  43. D. D. Perrin, W. L. F. Armarego and D. R. Perrin, PuriWcation of Laboratory Chemicals, 2nd edn., Pergamon, New York, 1980 Search PubMed.
  44. T. M. Bockman and J. K. Kochi, J. Chem. Soc., Perkin Trans. 2, 1996, 1633 RSC.
  45. S. M. Hubig, T. M. Bockman and J. K. Kochi, J. Am. Chem. Soc., 1996, 118, 3842 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.