Solvent effects on redox properties of radical ions[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Mats Jonsson, Abdelaziz Houmam, Gloria Jocys and Danial D. M. Wayner


Abstract

The one-electron reduction potentials of the radical cations of 1,4-diazabicyclo[2.2.2]octane (DABCO) and N,N,N[hair space]′,N[hair space]′-tetramethylphenylene-1,4-diamine (TMPD) in propan-2-ol, ethanol, methanol, acetone, acetonitrile and dimethyl sulfoxide have been measured by cyclic voltammetry. Furthermore, the one-electron reduction potentials of 1,4-benzoquinone, 1,4-benzoquinone radical anion, methyl viologen dication and methyl viologen radical cation also have been measured in a number of solvents. The present results, together with previously published data on radical anions, have been used to evaluate solvent effects in view of the Kamlet–Taft relationship. The main factors affecting the magnitude of the solvent effects are the gas-phase redox properties of the corresponding neutral molecule (ionization potential and electron affinity) and the charge. In general, the magnitude of the solvent effects on solution redox properties of radical ions decreases with increasing redox stability of the radical ion, reflected by low ionization potential of the corresponding neutral molecule for radical cations and by high electron affinity of the corresponding molecule for radical anions.


References

  1. Issued as NRCC publication No. 40905.
  2. C. Reichardt, in Solvents and Solvent Effects in Organic Chemistry, 2nd edn., VCH, Weinheim, 1988 Search PubMed.
  3. J. M. Tanko, in Chemistry of Double Bonded Functional Groups; Supplement A3, S. Patai(ed.), Wiley, New York, 1997 Search PubMed.
  4. L. Valgimigli, J. T. Banks, K. U. Ingold and J. Lusztyk, J. Am. Chem. Soc., 1995, 117, 9966 CrossRef CAS.
  5. Y. Marcus, Chem. Soc. Rev., 1993, 409 RSC and refs. therein.
  6. M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877 CrossRef CAS.
  7. W. R. Fawcett, in Quantitative Treatments of Solute/Solvent Interactions, P. Politzer and J. S. Murray(ed.), Elsevier, Amsterdam, 1994, pp. 183–212 Search PubMed.
  8. I. A. Koppel and V. A. Palm, in Advances in Linear Free Energy Relationships, N. B. Chapman and J. Shorter, ed., Plenum, London, 1972, Ch. 5 Search PubMed.
  9. R. S. Drago, J. Chem. Soc., Perkin Trans. 2, 1992, 1827 RSC.
  10. R. S. Drago, M. S. Hirsch, D. C. Ferris and C. W. Chronister, J. Chem. Soc., Perkin Trans. 2, 1994, 219 RSC.
  11. M. Jonsson, D. D. M. Wayner and J. Lusztyk, J. Phys. Chem., 1996, 100, 17539 CrossRef CAS.
  12. M. Jonsson, J. Lind, T. Reitberger, T. E. Eriksen and G. Merényi, J. Phys. Chem., 1993, 97, 11278 CrossRef CAS.
  13. M. Jonsson, J. Lind, G. Merényi and T. E. Eriksen, J. Chem. Soc., Perkin Trans. 2, 1995, 67 RSC.
  14. L. Engman, J. Persson, C. M. Andersson and M. Berglund, J. Chem. Soc., Perkin Trans. 2, 1992, 1309 RSC.
  15. S. Trasatti, Pure Appl. Chem., 1986, 58, 955 CrossRef CAS.
  16. R. G. Pearson, J. Am. Chem. Soc., 1986, 108, 6109 CrossRef CAS.
  17. There are uncertainties with respect to liquid junction potentials and the standard state of the electron and therefore the term ‘absolute potential’ is not strictly correct. However, to avoid confusion we have adopted this terminology as suggested by Pearson (ref. 16).
  18. H. Shalev and D. H. Evans, J. Am. Chem. Soc., 1989, 111, 2667 CrossRef CAS.
  19. W. C. Barrette, H. W. Johnson Jr. and D. T. Sawyer, Anal. Chem., 1984, 56, 1890 CrossRef CAS.
  20. A. F. M. Barton, Chem. Rev., 1975, 75, 731 CrossRef CAS.
  21. D. D. M. Wayner, B. A. Sim and J. J. Dannenberg, J. Org. Chem., 1991, 56, 4853 CrossRef CAS.
  22. NIST Standard Reference Database Number 69-March 1998 Release.
  23. A. Zweig, W. G. Hodgson and W. H. Jura, J. Am. Chem. Soc., 1964, 86, 4124 CrossRef CAS.
  24. S. Chowdhury, E. P. Grimsrud and P. Kebarle, J. Phys. Chem., 1987, 91, 2551 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.