A theoretical study of electronic factors affecting hydroxylation by model ferryl complexes of cytochrome P-450 and horseradish peroxidase

(Note: The full text of this document is currently only available in the PDF Version )

Michael Filatov, Nathan Harris and Sason Shaik


Abstract

Density functional theory (DFT) is used to study model ferryl species of cytochrome P-450 and horseradish peroxidase (HRP), as well as of the product complex due to oxidation of H2 by the P-450 species (1–4 and 7). The ferryl species studied include neutral and cation radical states of the porphyrin, as well as high- and low-spin situations. A few issues are addressed concerning the mechanism of alkane hydroxylation, and theoretical support is provided for: (i) the contention that spin inversion occurs along the reaction path, (ii) that the cation radical state of the porphyrin is an essential feature required to accommodate an excess electron from the ferryl moiety and thereby stabilize the ground state of the hydroxylation product, and (iii) that the donor property of the proximal ligand has a significant influence on the energy of the ferryl-to-ring charge-transfer states which are essential to convert the reactant state to the hydroxylation product state. In this sense, our study sheds some light on the difference between the oxidized and reduced HRP forms, HRP(I) and HRP(II), and suggests that the combination of a cation radical porphyrin state and a good π-donor proximal ligand like thiolate, could be the underlying reason for the potent hydroxylation ability of the P-450 ferryl-complex.


References

  1. W.-D. Woggon, Top. Curr. Chem., 1996, 184, 40.
  2. Cytochrome P-450: Structure, Mechanisms and Biochemistry, Ed.: P. R. Ortiz de Montellano, Plenum, New York, 1986 Search PubMed.
  3. M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, Chem. Rev., 1996, 96, 2841 CrossRef CAS.
  4. (a) J. T. Groves and Y.-Z. Zhang Han, in Cytochrome P-450: Structure, Mechanisms and Biochemistry, Ed.: P. R. Ortiz de Montellano, Plenum, New York, ch. 1, 1986 Search PubMed; (b) J. T. Groves, J. Chem. Educ., 1985, 62, 928 CrossRef CAS.
  5. B. Meunier, Chem. Rev., 1992, 92, 1411 CrossRef CAS.
  6. (a) M. Newcomb, M.-H. Le Tadic, D. A. Putt and P. F. Hollenberg, J. Am. Chem. Soc., 1995, 117, 3312 CrossRef CAS; (b) M. Newcomb, M.-H. Le Tadic-Biadatti, D. L. Chestrey, E. S. Roberts and P. F. Hollenberg, J. Am. Chem. Soc., 1995, 117, 12085 CrossRef CAS; (c) P. H. Toy and M. Newcomb, J. Am. Chem. Soc., 1998, 120, 9718 CrossRef CAS.
  7. (a) K. A. Lee and W. Nam, J. Am. Chem. Soc., 1997, 119, 116 CrossRef; (b) A. Vaz and J. Coon, Proc. Natl. Acad. Sci. USA, 1998, 95, 3555 CrossRef CAS.
  8. (a) H.-A. Wagenknecht and W.-D. Woggon, Chem. Biol., 1997, 4, 367 CAS; H.-A. Wagenknecht and W.-D. Woggon, Angew. Chem., Int. Ed. Engl., 1997, 36, 390 CAS; Angew. Chem., 1997, 109, 404 Search PubMed; (b) B. Stäubli, H. Fretz, U. Piantini and W.-D. Woggon, Helv. Chim. Acta, 1987, 70, 1173 CrossRef.
  9. (a) K. Kamaraj and D. Bandyopadhyay, J. Am. Chem. Soc., 1997, 119, 8099 CrossRef CAS See especially footnote 13 therein; (b) J. T. Groves, Z. Gross and M. K. Stern, Inorg. Chem., 1994, 33, 5065 CrossRef CAS.
  10. D. Schröder and H. Schwarz, Angew. Chem., Int. Ed. Engl., 1995, 34, 1973 CrossRef.
  11. (a) W.-D. Woggon, Nachr. Chem. Tech. Lab., 1988, 36, 890 Search PubMed; (b) J. H. Dawson, Science, 1988, 240, 433 CAS; H. I. Liu, M. Sono, S. Kadkhodyan, L. P. Hager, B. Hedman, K. O. Hodgson and J. H. Dawson, J. Biol. Chem., 1995, 270, 10544 CrossRef CAS; (c) J. Bernardou, A. S. Fabiano, A. Rober and B. Meunier, J. Am. Chem. Soc., 1994, 116, 9375 CrossRef CAS; (d) P. M. Champion, J. Am. Chem. Soc., 1989, 111, 3434 CrossRef CAS.
  12. For pronounced proximal ligand effect on epoxidation in model compounds, see: (a) Z. Gross and S. Nimri, Inorg. Chem., 1994, 33, 1731 CrossRef CAS; (b) K. Czarnecki, S. Nimri, Z. Gross, L. M. Proniewicz and J. Kincaid, J. Am. Chem. Soc., 1996, 118, 2929 CrossRef CAS; (c) Z. Gross, J. Biol. Inorg. Chem., 1996, 1, 368 CrossRef CAS; (d) Z. Gross, S. Nimri and L. Simkhovich, J. Mol. Catal. A: Chem., 1996, 113, 231 CrossRef CAS.
  13. (a) A. Fiedler, D. Schröder, S. Shaik and H. Schwarz, J. Am. Chem. Soc., 1994, 116, 10734 CrossRef CAS; (b) D. E. Clemmer, Y.-M. Chen, F. A. Khan and P. B. Armentrout, J. Phys. Chem., 1994, 98, 6522 CrossRef CAS; (c) S. Shaik, D. Danovich, A. Fiedler, D. Schröder and H. Schwarz, Helv. Chim. Acta, 1995, 78, 1393 CrossRef CAS; (d) K. Yoshizawa, Y. Shiota and T. Yamabe, J. Am. Chem. Soc., 1998, 120, 564 CrossRef CAS.
  14. H. Li, S. Narashimhulu, L. M. Havran, J. D. Winkler and T. L. Poulos, J. Am. Chem. Soc., 1995, 117, 6297 CrossRef CAS.
  15. S. Shaik, M. Filatov, D. Schröder and H. Schwarz, Chem. Eur. J., 1998, 4, 193 CrossRef CAS.
  16. (a) For the role of agostic complexes, see: J. P. Collman, A. S. Chien, T. A. Eberspacherd and J. I. Brauman, J. Am. Chem. Soc., 1998, 120, 425 Search PubMed; (b) for the elucidation of the hydroxylation mechanism in amine oxidation, see: J. P. Dinnocenzo, S. B. Karki and J. P. Jones, J. Am. Chem. Soc., 1993, 115, 7111 Search PubMed; (c) S. B. Karki, J. P. Dinnocenzo, J. P. Jones and K. R. Korezkwa, J. Am. Chem. Soc., 1995, 117, 3658.
  17. (a) T. Ziegler, Chem. Rev., 1991, 91, 651 CrossRef CAS; (b) L. A. Eriksson, L. G. M. Petersson, P. E. M. Siegbahn and U. Wahlgren, J. Chem. Phys., 1995, 102, 872 CrossRef CAS; (c) V. Jonas and W. Thiel, J. Chem. Phys., 1995, 102, 8474 CrossRef CAS (and references cited therein).
  18. (a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS; (b) J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  19. R. D. Amos, I. L. Alberts, J. S. Andrews, S. M. Collwell, N. C. Handy, D. Jayatilaka, P. J. Knowles, R. Kobayashi, N. Koga, K. E. Laidig, P. E. Maslen, C. W. Murray, J. E. Rice, J. Sanz, E. D. Simandrias, A. J. Stone and M.-D. Su, CADPAC5: The Cambridge Analytic Derivatives Package, Cambridge, UK, 1992 Search PubMed.
  20. (a) H. Kuramochi, L. Noodleman and D. A. Case, J. Am. Chem. Soc., 1997, 119, 11442 CrossRef CAS; (b) A. Ghosh, J. Almløf and L. Que, Jr., J. Phys. Chem., 1994, 98, 5576 CrossRef CAS.
  21. N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, Can. J. Chem., 1992, 70, 560 CAS.
  22. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley-Interscience, New York, 1986 Search PubMed.
  23. M. Filatov and W. Thiel, Mol. Phys., 1997, 91, 847 CrossRef CAS.
  24. Computations have been carried out for ferryl-complexes and water-complexes without and with a proximal ligand (NH3), using FT97 and BP86 with a Wachters basis set on Fe, 6-31G* on O, N (ligand), and N (ring) and STO-3G for C, H (or 6-31G** for H). The basis sets have been abandoned for computer time economy, and FT97 has been waived in favor of the more standard BP86 functional. We note though that these computations gave very similar results to the ones presented in the present paper.
  25. (a) T. Ziegler, A. Rauk and E. J. Baerends, Theor. Chim. Acta, 1977, 43, 261 CrossRef CAS; (b) U. von Barth, Phys. Rev A, 1979, 20, 1693 CrossRef CAS; (c) C. Daul, Int. J. Quantum Chem., 1994, 52, 867 CrossRef CAS.
  26. (a) A. C. Stückl, C. Daul and H. U. Güdel, J. Chem. Phys., 1997, 107, 4606 CrossRef CAS; (b) K. Doclo, C. Daul and S. Creve, Int. J. Quantum Chem., 1997, 61, 475 CrossRef CAS; (c) F. Giraldoni, J. Weber, K. Bellafrouh, C. Daul and H. U. Güdel, J. Chem. Phys., 1996, 104, 7624 CrossRef; (d) A. C. Stückl, C. Daul and H. U. Güdel, On the calculation of multiplets, in Recent Advances in Density Functional Methods (Part II), D. P. Chong, Ed., World ScientiWc Publishing Co., 1997 Search PubMed.
  27. C. J. Cramer, F. G. Dulles, D. J. Giesen and J. Almlöf, Chem. Phys. Lett., 1995, 245, 165 CrossRef CAS.
  28. A. A. Ovchinnikov and J. K. Labanowski, Phys. Rev. A, 1996, 53, 3946 CrossRef CAS.
  29. U. von Bart, Phys. Rev. A, 1979, 20, 1693 CrossRef CAS.
  30. S. Yamamoto, J. Teraoka and H. Kashiwagi, J. Chem. Phys., 1988, 88, 303 CrossRef CAS.
  31. (a) G. H. Loew, C. J. Kert, L. M. Hjemeland and R. F. Kirchner, J. Am. Chem. Soc., 1977, 99, 3534 CrossRef CAS; (b) L. K. Hanson, C. K. Chang, M. S. Davis and J. Fajer, J. Am. Chem. Soc., 1981, 103, 663 CrossRef CAS; (c) K. Tatsumi and R. Hoffmann, Inorg. Chem., 1981, 20, 3771 CrossRef CAS.
  32. J. Antony, M. Grodzicki and A. X. Trautwein, J. Phys. Chem. A, 1997, 101, 2692 CrossRef CAS.
  33. A. Strich and A. Veillard, Nouv. J. Chim., 1983, 7, 347 Search PubMed.
  34. For a Ru analog of type-(II) ferryls, see: J. T. Groves and K. H. Anh, Inorg. Chem., 1987, 23, 3831 Search PubMed.
  35. (a) G. Loew and M. Dupuis, J. Am. Chem. Soc., 1996, 118, 10584 CrossRef CAS; (b) ibid., 1996, 118, 10588 Search PubMed.
  36. The sextet high-spin state (S= 5/2) was computed at two different geometries and found to be higher than the states shown in Fig. 8 here. In any event, the energy of the S= 5/2 state will not change any of the arguments.
  37. H. Thomann, M. Bernardo, D. Goldfrab, P. M. H. Kroneck and V. Ulrich, J. Am. Chem. Soc., 1995, 117, 8243 CrossRef CAS.
  38. (a) See also, M. Unno, J. F. Christian, D. E. Benson, N. C. Gerber, S. G. Sligar and P. M. Champion, J. Am. Chem. Soc., 1997, 119, 6614 Search PubMed; (b) H. Schappacher, L. Ricard, R. Weiss, E. Bill, R. M. Montoya, H. Winkler and A. X. Trautwein, Eur. J. Biol., 1987, 168, 419 Search PubMed; (c) see however, a high-spin with a spatially Wxed PhS ligand in a fenced prophyrin in ref. 8.
  39. J. D. Lipscomb, Biochemistry, 1980, 19, 3590 CrossRef CAS.
  40. Gmelins Handbuch der Anorganischen Chemie. 8. Auflage, Verlag Chemie, GmbH, Weinheim, 1953 Search PubMed.
  41. See, M. Filatov and S. Shaik, J. Chem. Phys., 1999, 110, 116 Search PubMed; M. Filatov and S. Shaik, Chem. Phys. Lett., 1998, 288, 689 CrossRef CAS.
  42. R. A. Harman and H. Eyring, J. Chem. Phys., 1942, 10, 557 CAS.
  43. M. Filatov and S. Shaik, J. Phys. Chem. A, 1998, 102, 3835 CrossRef CAS.
  44. For similar conclusions on the role of thiolate, see: O. Zakharieva, M. Grodzicki, A. X. Trautwein, C. Veeger and I. M. C. M. Rietjens, J. Biol. Inorg. Chem., 1996, 1, 192 Search PubMed.
  45. For a discussion of various thiolate ligands and their effect on spectra in FeIII complexes, see: K. K. Stavrev and M. C. Zerner, Int. J. Quantum. Chem.: Quantum Biol. Symp. 22, 1995, 155 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.