The strength of the 3′-gauche effect dictates the structure of 3′-O-anthraniloyladenosine and its 5′-phosphate, two analogues of the 3′-end of aminoacyl-tRNA

(Note: The full text of this document is currently only available in the PDF Version )

Parag Acharya, Barbara Nawrot, Mathias Sprinzl, Christophe Thibaudeau and Jyoti Chattopadhyaya


Abstract

Anthranilic acid charged yeast tRNAPhe or E. coli tRNAVal are able to form a stable complex with EF-Tu*GTP, hence the 2′- and 3′-O-anthraniloyladenosines and their 5′-phosphate counterparts have been conceived to be the smallest units that are capable of mimicking aminoacyl-tRNA. Since the 3′-O-anthraniloyladenosine also binds more efficiently to the EF-Tu*GTP complex compared to its 2′-isomer, we have herein delineated the stereoelectronic features that dictate the conformation of 3′-O-anthraniloyladenosine and its 5′-phosphate vis-a-vis their 2′-counterparts and we have also addressed how their structures and thermodynamic stabilizations are different from adenosine and 5′-AMP. It has been found that the electron-withdrawing anthraniloyl group exerts gauche effects of variable strengths depending upon whether it is at the 2′- or at 3′-position because of either the presence or absence of O2′–N9 gauche effect, [GE(O2′–C2′–C1′–N9)], thereby steering the pseudorotation of the constituent sugar moiety either to the North (N)-type (C3′-endo) or South (S)-type (C2′-endo) conformation. The 3′-O-anthraniloyladenosine 5′-phosphate has a relatively more stabilized S-type conformation ΔG[hair space]° = –4.6 kJ mol–1) than 3′-O-anthraniloyladenosine itself (ΔG[hair space]° = –3.9 kJ mol–1), whereas the ΔG[hair space]° for 2′-O-anthraniloyladenosine and its 5′-monophosphate are respectively –0.9 and –1.8 kJ mol–1, suggesting that the 3′-gauche effect of the 3′-O-anthraniloyl group is stronger than that of 2′-O-anthraniloyl in the drive of the sugar conformation. Since the EF-Tu can specifically recognize the aminoacylated-tRNA from the non-charged tRNA, we have assessed the free-energy (ΔG[hair space]°) for this recognition switch to be the least ≈ –2.9 kJ mol–1 by comparison of ΔG[hair space]° of the N⇄pseudorotational equilibrium for 3′-O-anthraniloyladenosine 5′-phosphate and 5′-AMP. The 3′-O-anthraniloyladenosine and its 5′-phosphate are much more flexible than the isomeric 2′-counterparts as is evident from the temperature-dependent coupling constants analysis. The relative rate of the transacylation reaction of 2′(3′)-O-anthraniloyladenosine and its 5′-phosphate is cooperatively dictated by the two-state N⇄S pseudorotational equilibrium of the sugar, which in turn is controlled by a balance of the stereoelectronic 3′- and 2′-gauche effects as well as by the pseudoaxial preference of the 3′-O- or 2′-O-anthraniloyl group. The reason for the larger stabilization of the 2′-endo conformer for 3′-O-anthraniloyladenosine and its 5′-phosphate lies in the fact that the C3′–O3′ bond takes up an optimal gauche orientation with respect to the C4′–O4′ bond dictating the pseudoaxial orientation of the 3′-anthraniloyl residue, which can be achieved only in the S-type sugar conformation with adenin-9-yl and the 2′-OH groups in the pseudoequatorial geometry, compared to the preferred C3′-endo sugar with a pseudoaxial aglycone and 2′-OH found in the 3′-terminal adenosine moiety in the helical 3′-CCA end of uncharged tRNA.


References

  1. F. Janiak, V. A. Dell, J. K. Abrahamson, B. S. Watson, D. L. Miller and A. E. Johnson, Biochemistry, 1990, 29, 4268 CrossRef CAS.
  2. R. O. Potts, N. C. Ford, Jr. and M. J. Fournier, Biochemistry, 1981, 20, 1653 CrossRef CAS.
  3. B. Nawrot, W. Milius, A. Ejchart, S. Limmer and M. Sprinzl, Nucleic Acids Res., 1997, 25, 948 CrossRef CAS.
  4. (a) M. Taiji, S. Yokoyama and T. Miyazawa, Nucleic Acids Res., 1982, 11, 161 CAS; (b) M. Taiji, S. Yokoyama and T. Miyazawa, Biochemistry, 1985, 98, 1447 CAS.
  5. P. Nissen, M. Kjeldgaard, S. Thirup, G. Polekhina, L. Reshetnikova, B. F. C. Clark and J. Nyborg, Science, 1995, 270, 1464 CAS.
  6. S. Limmer, M. Vogtherr, B. Nawrot, R. Hillenbrand and M. Spinzl, Angew. Chem., Int. Ed. Engl., 1997, 36, 2485 CAS.
  7. L. Servillo, C. Balestrieri, L. Quagliuolo, L. Iorio and A. Giovane, Eur. J. Biochem., 1993, 213, 583 CAS.
  8. B. Nawrot and M. Sprinzl, Nucleosides Nucleotides, 1998, 17, 815 CAS.
  9. (a) J. Plavec, W. Tong and J. Chattopadhyaya, J. Am. Chem. Soc., 1993, 115, 9734 CrossRef CAS; (b) J. Plavec, N. Garg and J. Chattopadhyaya, J. Chem. Soc., Chem. Commun., 1993, 1011 RSC; (c) J. Plavec, L. H. Koole and J. Chattopadhyaya, J. Biochem. Biophys. Methods, 1992, 25, 253 CrossRef CAS; (d) L. H. Koole, H. M. Buck, A. Nyilas and J. Chattopadhyaya, Can. J. Chem., 1987, 65, 2089 CAS; (e) L. H. Koole, H. M. Buck, H. Bazin and J. Chattopadhyaya, Tetrahedron, 1987, 43, 2289 CrossRef CAS; (f) L. H. Koole, J. Plavec, H. Liu, B. R. Vincent, M. R. Dyson, P. L. Coe, R. T. Walker, G. W. Hardy, S. G. Rahim and J. Chattopadhyaya, J. Am. Chem. Soc., 1992, 114, 9934 CrossRef; (g) J. Plavec, C. Thibaudeau, G. Viswanadham, C. Sund and J. Chattopadhyaya, J. Chem. Soc., Chem. Commun., 1994, 781 RSC; (h) C. Thibaudeau, J. Plavec, K. A. Watanabe and J. Chattopadhyaya, J. Chem. Soc., Chem. Commun., 1994, 537 RSC; (i) C. Thibaudeau, J. Plavec, N. Garg, A. Papchikhin and J. Chattopadhyaya, J. Am. Chem. Soc., 1994, 116, 4038 CrossRef CAS; (j) J. Plavec, C. Thibaudeau and J. Chattopadhyaya, J. Am. Chem. Soc., 1994, 116, 6558 CrossRef CAS; (k) C. Thibaudeau, J. Plavec and J. Chattopadhyaya, J. Am. Chem. Soc., 1994, 116, 8033 CrossRef CAS; (l) J. Plavec, PhD Thesis, Department of Bioorganic Chemistry, Uppsala University, Sweden, 1995; (m) J. Plavec, C. Thibaudeau and J. Chattopadhyaya, Tetrahedron, 1995, 51, 11775 CrossRef CAS; (n) C. Thibaudeau, J. Plavec and J. Chattopadhyaya, J. Org. Chem., 1996, 61, 266 CrossRef CAS; (o) J. Chattopadhyaya, Nucleic Acids Symp. Ser., 1996, 35, 111 Search PubMed; (p) J. Plavec, C. Thibaudeau and J. Chattopadhyaya, Pure Appl. Chem., 1996, 68, 2137 CAS; (q) I. Luyten, C. Thibaudeau and J. Chattopadhyaya, Tetrahedron, 1997, 53, 6433 CrossRef CAS; (r) C. Thibaudeau, A. Földesi and J. Chattopadhyaya, Tetrahedron, 1997, 53, 14043 CrossRef CAS; (s) C. Thibaudeau, A. Földesi and J. Chattopadhyaya, Tetrahedron, 1998, 54, 1857 CrossRef CAS; (t) I. Luyten, C. Thibaudeau and J. Chattopadhyaya, J. Org. Chem., 1997, 62, 8800 CrossRef CAS; (u) C. Thibaudeau and J. Chattopadhyaya, Nucleosides Nucleotides, 1998, 17, 1589 CAS; (v) I. Luyten, J. Matulic-Adamic, L. Beigelman and J. Chattopadhyaya, Nucleosides Nucleotides, 1998, 17, 1605 CAS; (w) C. Thibaudeau and J. Chattopadhyaya, Nucleosides Nucleotides, 1997, 16, 523 CAS; (x) C. Thibaudeau, J. Plavec and J. Chattopadhyaya, J. Org. Chem., 1998, 63, 4967 CrossRef CAS; (y) C. Thibaudeau, A. Kumar, S. Bekiroglu, A. Matsuda, V. E. Marquez and J. Chattopadhyaya, J. Org. Chem., 1998, 63, 5447 CrossRef CAS.
  10. (a) H. P. M. de Leeuw, C. A. G. Haasnoot and C. Altona, Isr. J. Chem., 1980, 20, 108 CAS; (b) C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1972, 94, 8205 CrossRef CAS; (c) C. Altona and M. Sundaralingham, J. Am. Chem. Soc., 1973, 95, 2333 CrossRef CAS.
  11. (a) J. Feigon, A. H. J. Wang, G. A. van der Marel, J. H. van Boom and A. Rich, Nucleic Acids Res., 1984, 12, 1243 CAS; (b) S. Tran-Dinh, J. Taboury, J.-M. Neumann, T. Huynh-Dinh, B. Genissel, B. Langlois d'Estaintot and J. Igolen, Biochemistry, 1984, 23, 1362 CrossRef CAS; (c) P. W. Davis, K. Hall, P. Cruz, I. Tinoco and T. Neilson, Nucleic Acids Res., 1986, 14, 1279 CAS; (d) P. W. Davis, R. W. Adamiak and I. Tinoco, Biopolymers, 1990, 29, 109 CAS; (e) P. Agback, A. Sandstrom, S.-I. Yamakage, C. Sund, C. Glemarec and J. Chattopadhyaya, J. Biochem. Biophys. Methods, 1993, 27, 229 CrossRef CAS; (f) P. Agback, C. Glemarec, L. Yin, A. Sandstrom, J. Plavec, C. Sund, S.-I. Yamakage, G. Wiswanadham, B. Rousse, N. Puri and J. Chattopadhyaya, Tetrahedron Lett., 1993, 34, 3929 CrossRef CAS.
  12. (a) N. S. Zefirov, Zh. Org. Khim., 1970, 6, 1761 CAS; (b) N. S. Zefirov, L. G. Gurvich, A. S. Shashkov, M. Z. Krimer and E. A. Vorob'eva, Tetrahedron, 1976, 32, 1211 CrossRef CAS; (c) R. Hoffmann, Acc. Chem. Res., 1971, 4, 1 CrossRef CAS; (d) N. D. Epiotis, S. Sarkanen, D. Bjorkquist, L. Bjorkquist and R. Yates, J. Am. Chem. Soc., 1974, 96, 4075 CrossRef CAS; (e) K. B. Wiberg, Acc. Chem. Res., 1996, 29, 229 CrossRef CAS; (f) W. K. Olson and J. L. Sussman, J. Am. Chem. Soc., 1982, 104, 270 CrossRef CAS; (g) W. K. Olson, J. Am. Chem. Soc., 1982, 104, 278 CrossRef CAS.
  13. (a) F. A. A. M. De Leeuw and C. Altona, J. Comput. Chem., 1983, 4, 428 CrossRef and PSEUROT, QCPE program No 463; (b) C. A. G. Haasnoot, F. A. A. M. de Leeuw and C. Altona, Tetrahedron, 1980, 36, 2783 CrossRef CAS.
  14. J. E. Kilpatrick, K. S. Pitzer and R. Spitzer, J. Am. Chem. Soc., 1947, 69, 2483 CrossRef CAS.
  15. (a) E. Diez, J. S. Fabian, J. Guilleme, C. Altona and L. A. Donders, Mol. Phys., 1989, 68, 49 CAS; (b) L. A. Donders, F. A. A. M. de Leeuw and C. Altona, Magn. Reson. Chem., 1989, 27, 556 CAS; (c) C. Altona, J. H. Ippel, A. J. A. W. Hoekzema, C. Erkelens, G. Groesbeek and L. A. Donders, Magn. Reson. Chem., 1989, 27, 564 CAS; (d) J. van Wijk, unpublished results.
Click here to see how this site uses Cookies. View our privacy policy here.