Synthesis and structural analysis of copper(II) pyridine amide complexes as HIV-1 protease inhibitors

(Note: The full text of this document is currently only available in the PDF Version )

Florence Lebon, Marie Ledecq, Zohra Benatallah, Sames Sicsic, René Lapouyade, Olivier Kahn, Arnaud Garçon, Michèle Reboud-Ravaux and François Durant


Abstract

In an effort to propose original non-peptide HIV-1 protease inhibitors by rational drug design, we have previously reported that the complex diaqua[bis(2-pyridylcarbonyl)amido]copper(II) nitrate dihydrate behaved as a competitive inhibitor of the enzyme (Ki = 480 ± 120 µM). Based on a modeled interaction of this complex with HIV-1 protease, we present here the synthesis and crystallographic structures of two pyridine amide copper(II) coordination complexes, optimized for their interaction with the enzyme active site. The complexes adopted a tetragonally elongated octahedral geometry in the crystal. In both cases, two ligands symmetrically coordinate copper(II) by aromatic nitrogen and amide oxygen atoms, forming an equatorial square plane which may orient the various substituents within the enzyme subsites. As the apical positions form long bonds of 2.423(2) and 2.464(2) Å with copper(II), a statistical analysis was carried out in the Cambridge Structural Database. It gave for 1103 copper(II) complexes a mean copper(II)–oxygen distance of 2.450 ± 0.005 Å in the axial positions, typical of ‘long’ Cu–O bonds in Jahn–Teller distorted complexes of copper(II). The two compounds showed good inhibition of the HIV-1 protease (IC50 = 1.5 and 1.0 µM).


References

  1. F. Lebon, E. De Rosny, M. Reboud-Ravaux and F. Durant, Eur. J. Med. Chem., 1998, 33, 733 CrossRef CAS.
  2. M. Markowitz, H. M. Mo, D. J. Kempf, D. W. Norbeck, T. N. Bhat, J. W. Erickson and D. D. Ho, J. Virol., 1995, 69, 701 CAS.
  3. P. Y. S. Lam, P. K. Jadhav, C. J. Eyermann, C. N. Hodge, Y. Ru, L. T. Bacheler, J. L. Meek, M. J. Otto, M. M. Rayner, Y. N. Wong, C. H. Chang, P. C. Weber, D. A. Jackson, T. R. Sharpe and S. Erickson-Viitanen, Science, 1994, 263, 380 CrossRef CAS.
  4. A. L. Swain, M. M. Miller, J. Green, D. H. Rich, J. Schneider, S. B. H. Kent and A. Wlodawer, Proc. Natl. Acad. Sci. U.S.A., 1990, 87, 8805 CAS.
  5. M. Jaskolski, A. G. Tomasselli, T. K. Sawyer, D. G. Staples, R. L. Heinrikson, J. Schneider, B. H. Kent and A. Wlodawer, Biochemistry, 1991, 30, 1600 CrossRef CAS.
  6. R. Bone, J. P. Vacca, P. S. Anderson and M. K. Holloway, J. Am. Chem. Soc., 1991, 113, 9382 CrossRef CAS.
  7. I. Castro, J. Faus, M. Julve, J. M. Amigo, J. Sletten and T. Debaerdemaeker, J. Chem. Soc., Dalton Trans., 1990, 891 RSC.
  8. S. Wang, G. W. A. Milne, X. Yan, I. J. Posey, M. C. Nicklaus, L. Graham and W. G. Rice, J. Med. Chem., 1996, 39, 2047 CrossRef CAS.
  9. D. Venkataraman, Y. Du, S. R. Wilson, K. A. Hirsch, P. Zhang and J. S. Moore, J. Chem. Educ., 1997, 74, 915 Search PubMed.
  10. C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525 CrossRef CAS.
  11. M. Luhmer, K. Bartik, A. Dejaegere, P. Bovy and J. Reisse, Bull. Soc. Chim. Fr., 1994, 131, 603 CAS.
  12. S. Tsubayama, T. Sakurai, K. Kobayashi, N. Azuma, Y. Kajikawa and K. Ishizu, Acta Crystallogr., Sect. B, 1984, 40, 466 CrossRef.
  13. Biosym/Molecular Simulations Inc., San Diego, INSIGHTII package, version 95.0..
  14. R. Bone, J. P. Vacca, P. S. Anderson and M. K. Hooloway, J. Am. Chem. Soc., 1991, 113, 9382 CrossRef CAS.
  15. A. Bouras, N. Boggetto, Z. Benatalah, E. de Rosny, S. Sicsic and M. Reboud-Ravaux, J. Med. Chem., in the press Search PubMed.
  16. A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, in Ist. di Ric. per lo Sviluppo di Metodologie Monocristallographiche, CNR, University of Bari, Bari, Italy, 1992.
  17. G. M. Sheldrick and T. R. Schneider, 1997, SHELXL: high resolution refinement, Methods in Enzymology, 277, ed C. W. Carter, Jr and L. M. Sweet, Academic Press, San Diego, pp. 319–343 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.