A theoretical approach to understanding the fragmentation reaction of halonitrobenzene radical anions[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Adriana B. Pierini, José S. Duca, José S. Duca, Jr., Domingo M. A. Vera and Domingo M. A. Vera


Abstract

We present a semiempirical AM1 study of the radical anions of o-, m- and p-halonitrobenzenes and some alkyl substituted derivatives in relation to their σ–π orbital isomerism and the energy of their interconversion (ΔEσπ). Halobenzene radical anions are also included for comparison. The results obtained with the RHF/CI(5) formalism account for the differences observed in the fragmentation rate of these radical anions under thermal and photochemical conditions. Based on the calculated ΔEσπ the intramolecular thermal electron transfer from the π system to the σ* C–X bond involved in the fragmentation of the intermediates into an aromatic radical and the anion of the leaving group occurs with considerable energy for the p-, m- and o-chloronitrobenzenes (1a–c) and the p- and m-bromo (2a, b) derivatives. The fragmentation of these radical anions is favoured either from the first or from higher energy excited doublet states. On the other hand, the intramolecular thermal electron transfer is favoured for the p-, m-, o-iodo (3a–c) and o-bromo (2c) derivatives. The results obtained for some alkyl substituted halonitrobenzene radical anions are in agreement with their known experimental fragmentation rates.


References

  1. (a) E. M. Arnett and R. A. Flowers, II, Chem. Soc. Rev., 1993, 22, 9 RSC; (b) X.-M. Zhang, J. Chem. Soc., Perkin Trans. 2, 1993, 2275 RSC; (c) K. Daasbjerg, J. Chem. Soc., Perkin Trans. 2, 1994, 1275 RSC; (d) T. Clark, J. Am. Chem. Soc., 1988, 110, 1672 CrossRef CAS.
  2. J. M. Savéant, Adv. Phys. Org. Chem., 1990, 26, 1 CAS.
  3. For example see: (a) W. C. Danen, T. T. Kensler, J. G. Lawless, M. F. Marcus and M. D. Hawley, J. Phys. Chem., 1969, 73, 4389 CrossRef CAS; (b) D. Behar and P. Neta, J. Phys. Chem., 1981, 85, 690 CrossRef CAS; (c) P. Neta and D. Behar, J. Am. Chem. Soc., 1981, 103, 103 CrossRef CAS; (d) M. Meot-Ner, P. Neta, R. K. Norris and K. Wilson, J. Phys. Chem., 1986, 90, 168 CrossRef.
  4. D. Bethell, R. G. Compton and R. G. Welling, J. Chem. Soc., Perkin Trans. 2, 1992, 147 RSC.
  5. R. G. Compton, R. A. W. Dryfe and A. C. Fisher, J. Electroanal. Chem., 1993, 361, 275 CrossRef CAS.
  6. R. G. Compton, R. A. W. Dryfe and A. C. Fisher, J. Chem. Soc., Perkin Trans. 2, 1994, 1581 RSC.
  7. R. G. Compton and R. A. W. Dryfe, J. Electroanal. Chem., 1994, 375, 247 CrossRef CAS.
  8. R. G. Compton, R. A. W. Dryfe, J. C. Eklund, S. D. Page, J. Hirst, L. B. Nei, G. W. J. Fleet, K. Y. Hsia, D. Bethell and L. Martingale, J. Chem. Soc., Perkin Trans. 2, 1995, 1673 RSC.
  9. Orbital isomers are defined as species distinguishable by different occupation of a set of available MOs. The MOs may be distinguished by symmetry, or by their nodal properties. See: M. J. S. Dewar, S. Kirschner and H. W. Kollmar, J. Am. Chem. Soc., 1974, 96, 5242 Search PubMed.
  10. (a) D. D. Clarke and C. A. Coulson, J. Chem. Soc. A, 1969, 169 RSC; (b) R. Dressler, M. Allan and E. Haselbach, Chimia, 1985, 39, 385 CAS.
  11. M. C. R. Symons, Acta Chem. Scand., 1997, 51, 127 CAS; M. C. R. Symons, Pure Appl. Chem., 1981, 53, 223 CAS.
  12. (a) M. J. S. Dewar and K. Narayanaswami, J. Am. Chem. Soc., 1964, 86, 2422 CrossRef CAS; (b) M. J. S. Dewar, A. H. Pakiari and A. B. Pierini, J. Am. Chem. Soc., 1982, 104, 3242 CrossRef CAS.
  13. See: L. Salem, Electrons in Chemical Reactions: First Principles, Wiley, New York, 1982 Search PubMed.
  14. (a) H. Villar, E. A. Castro and R. A. Rossi, Can. J. Chem., 1982, 60, 2525 CAS; (b) H. Villar, E. A. Castro and R. A. Rossi, Z. Naturforsch., Teil A, 1984, 39, 49; (c) J. Casado, I. Gallardo and M. Moreno, J. Electroanal. Chem., 1987, 219, 197 CrossRef CAS; (d) A. B. Pierini, J. S. Duca, Jr. and M. T. Baumgartner, J. Mol. Struct. (THEOCHEM), 1994, 311, 343; (e) C. Glidewell, Chem. Scr., 1985, 25, 142 Search PubMed; (f) C. P. Andrieux, J. M. Savéant and D. Zann, Nouv. J. Chim., 1984, 8, 107 Search PubMed; (g) R. Benassi, C. Bertarini and F. Taddei, Chem. Phys. Lett., 1996, 257, 633 CrossRef CAS.
  15. A. B. Pierini and J. S. Duca, Jr., J. Chem. Soc., Perkin Trans. 2, 1995, 1821 RSC.
  16. C. Amatore, C. Combellas, J. Pinson, M. A. Oturan, S. Robveille, J.-M. Saveánt and A. Thiébault, J. Am. Chem. Soc., 1985, 107, 4846 CrossRef CAS.
  17. D. A. Liotard, E. F. Healy, J. M. Ruiz and M. J. S. Dewar, AMPAC version 2.1, Quantum Chemistry Program Exchange, program 506, QCPE Bull., 1989, 9, 123 Search PubMed.
  18. J. W. McIver and A. Komornicki, Chem. Phys. Lett., 1971, 10, 303 CrossRef CAS; J. W. McIver and A. Komornicki, J. Am. Chem. Soc., 1972, 94, 265 CrossRef.
  19. G. Rauhut and T. Clark, J. Chem. Soc., Faraday Trans., 1994, 90, 1783 RSC.
  20. E. A. Halevi and M. Wolfsberg, J. Chem. Soc., Perkin Trans. 2, 1993, 1493 RSC.
  21. M. J. S. Dewar and E. G. Zoebisch, J. Mol. Struct. (THEOCHEM), 1988, 180, 1 CrossRef.
  22. The σ surface of chlorobenzene RA has been proposed as repulsive at all C–Cl separation distances but infinity. See ref. 10a.
  23. This type of effect was also observed for the neutral molecules. In the absence of steric effects, the molecules have weakly restricted NO2 rotation about the C–N axis. We found AM1/RHF barriers of 7.57 kJ mol–1 for p-bromonitrobenzene and 8.7 kJ mol–1 for p-chloronitrobenzene. This is reasonable considering the values observed and calculated for nitrobenzene. See for example: J. P. Ritchie, Tetrahedron, 1988, 44, 7465 Search PubMed.
  24. This correlation was assumed within the Marcus theory even though the ΔEσπ was not corrected to take into consideration the “effective intra-ET distance”(see ref. 15).
  25. V. D. Parker, Acta Chem. Scand., Ser. B, 1981, 35, 655 Search PubMed.
  26. R. G. Compton, R. G. Wellington, P. J. Dobson and P. A. Leigh, J. Electroanal. Chem., 1994, 370, 129 CrossRef CAS.
  27. W. C. Danen, T. T. Kensler, J. G. Lawless, M. F. Marcus and M. D. Hawley, J. Phys. Chem., 1969, 73, 4389 CrossRef CAS.
  28. T. Teherani and A. J. Bard, Acta Chem. Scand., Ser. B, 1983, 37, 413 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.