Proton chemical shifts in NMR. Part 13.1 Proton chemical shifts in ketones and the magnetic anisotropy and electric field effect of the carbonyl group

(Note: The full text of this document is currently only available in the PDF Version )

Raymond J. Abraham and Nick J. Ainger


Abstract

The proton resonance spectra of a variety of cyclic ketones including 2-tert-butylcyclohexanone, 4-tert-butylcyclohexanone, fenchone, trans-1-decalone, androstan-3-one, androstan-17-one, androstane-3,17-dione and androstane-3,11,17-trione were obtained and completely assigned. These data together with previous literature data allowed the determination of the carbonyl substituent chemical shifts (SCS) in a variety of cyclic molecules. These SCS were analysed in terms of the carbonyl electric field, magnetic anisotropy and steric effect for long-range protons together with a model (CHARGE6) for the calculation of the two-bond and three-bond effects.

The anisotropic effect of the carbonyl bond was found to be well reproduced with an asymmetric magnetic anisotropy acting at the carbon atom with values of Δχparl and Δχperp of 17.1 and 3.2 (10–30 cm3 molecule–1). This together with the electric field effect of the carbonyl group gave good agreement with the observed proton shifts without the need to invoke any steric effects. The short range effects of the carbonyl group (i.e. HCC[double bond, length half m-dash]O) were modelled by a cos θ function which was found to be dependant on the ring size of the cyclic ketone via the CC(O)C bond angle.

This model gives the first comprehensive calculation of the SCS of the carbonyl group. For the data set of ca. 200 proton chemical shifts spanning ca. 2 ppm the rms error of the observed vs. calculated shifts was 0.11 ppm.


References

  1. Part 12, R. J. Abraham, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1998, 1751 Search PubMed.
  2. R. J. Abraham, J. Fisher and P. Loftus, Introduction to NMR Spectroscopy, J. Wiley, 1988, p. 23 Search PubMed.
  3. P. T. Narasimhan and M. T. Rogers, J. Phys. Chem., 1959, 63, 1388 CrossRef CAS.
  4. L. M. Jackman, Nuclear Magnetic Resonance Spectroscopy, Pergamon Press, 1959, pp. 112–30 Search PubMed.
  5. J. A. Pople, J. Chem. Phys., 1962, 37, 53,60.
  6. A. A. Bothner-By and J. A. Pople, Ann. Rev. Phys. Chem., 1965, 16, 43 CrossRef CAS.
  7. R. F. Zurcher, Prog. Nucl. Magn. Reson. Spectrosc., 1967, 2, 205 CrossRef.
  8. H. M. McConnell, J. Chem. Phys., 1957, 27, 226 CrossRef CAS.
  9. J. W. ApSimon, P. V. DeMarco and D. W. Mathieson, Tetrahedron, 1970, 26, 119 CrossRef CAS.
  10. J. Homer and D. Callagham, J. Chem. Soc. A, 1968, 439 RSC.
  11. K. J. Toyne, Tetrahedron, 1973, 29, 3889 CrossRef CAS.
  12. H. J. Schneider, U. Buchheit, N. Becker, G. Shmidt and U. Siehl, J. Am. Chem. Soc., 1985, 107, 7027 CrossRef CAS.
  13. (a) M. P. Williamson and T. Asakura, J. Magn. Reson., 1991, 94, 557 CAS; (b) ibid., 1993, B101,63 Search PubMed; (c) M. P. Williamson, T. Asakura, E. Nakamura and M. Demura, J. Biomol. NMR, 1992, 2, 83 CAS.
  14. R. J. Abraham, M. E. Edgar, R. P. Glover, M. A. Warne and L. Griffiths, J. Chem. Soc., Perkin Trans. 2, 1996, 333 RSC.
  15. R. J. Abraham, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1997, 31 RSC.
  16. R. J. Abraham, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1997, 203, 881 RSC.
  17. R. J. Abraham, L. Griffiths and M. A. Warne, Magn. Reson. Chem., 1998, S179,36.
  18. Bruker UXNMR version 010892, Bruker AM, Silbersteifen, D-7512 Germany.
  19. Varian Associates, Palo Alta, CA, USA.
  20. GAUSSIAN 94, Gaussian Inc., Pittsburgh PA, 1994. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, J. A. Pople.
  21. N. J. Ainger, PhD thesis, Liverpool University, 1999.
  22. F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc., 1970, 92, 1347 CrossRef CAS.
  23. J. K. Whitesell and M. A. Minton, Stereochemical Analysis of Alicyclic Compounds by C-13 NMR, Chapman and Hall, London, 1987 Search PubMed.
  24. S. Castellano and A. A. Bothner-By, J. Chem. Phys., 1964, 41, 3863 CrossRef CAS.
  25. R. J. Abraham and N. J. Ainger, manuscript in preparation.
  26. R. J. Abraham, A. P. Barlow and A. E. Rowan, Magn. Reson. Chem., 1989, 27, 1074 CAS.
  27. J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy — A Guide for Chemists, OUP, Oxford, 1987, p. 308 Search PubMed.
  28. C. R. Kaiser, R. Rittner and E. A. Basso, Magn. Reson. Chem., 1994, 32, 503 CAS.
  29. C. J. Puchert and J. Behnke, Aldrich Library of13 C and1 H FT NMR Spectra, Aldrich Chemical Company Inc.Milwaukee, USA, 1993 Search PubMed.
  30. L. Griffiths, PhD thesis, Liverpool University, 1979.
  31. PCModel version 5, Serena Software Ltd., PO BOX 3076, Bloomington, Indiana, 1994.
  32. Landholt-Bornstein, Vol. 7, Structure Data of Free Polyatomic Molecules, ed. K. H. Hellwege and A. M. Hellwege, Springer, NY, 1976 Search PubMed.
  33. S. S. Kuo, Computer Applications of Numerical Methods, Addison-Wesley, London, 1972, ch. 8 Search PubMed.
  34. R. J. Abraham and E. Bretschneider, Internal Rotation in Molecules, ed. W. J. Orville-Thomas, Academic Press, NY, 1974, ch. 13 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.