Gas phase and condensed phase SNi reactions. The competitive six and seven centre cyclisations of the 5,6-epoxyhexoxide anion. A joint experimental and ab initio study. A comparison with SNi reactions of homologous epoxyalkoxide anions[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

John M. Hevko, Suresh Dua, John H. Bowie and Mark S. Taylor


Abstract

A. Ab initio calculations [at the MP2 Fc/6-31+G(d) level of theory] indicate that the barriers to the transition states for the competitive six and seven centre SNi cyclisation processes of the 5,6-epoxyhexoxide anion are 35.0 and 39.7 kJ mol–1 respectively. Experimental studies show that (i) in solution, the 5,6-epoxyhexoxide anion cyclises (and at the same time opens the ethylene oxide ring) to give tetrahydropyran-2-methanol as the predominant product on workup, and (ii) collisional activation of the 5,6-epoxyhexoxide anion in the gas phase gives the 2-tetrahydropyranmethoxide anion as the exclusive anionic product. It is proposed that frequency factors (Arrhenius A factors) control the courses of these kinetically controlled gas phase reactions. A comparison of the calculated harmonic vibrational partition functions for the two possible transition states confirms a higher value of QVib for the reaction proceeding through the six-membered transition state.

B. A comparison is made of the reported competitive SNi reactions for 2,3-epoxypropoxide, 3,4-epoxybutoxide, 4,5-epoxypentoxide and 5,6-epoxyhexoxide anions. For all but the 3,4-epoxybutoxide system, the exclusive or major product is that which contains the smaller of the two ring systems for both gas phase and condensed phase reactions. In the case of the 3,4-epoxybutoxide system: (i) in the gas phase, both four and five membered ring SNi products are formed in comparable yield, and (ii) in the condensed phase, the major product is that with the larger ring.


References

  1. S. Dua, M. S. Taylor, M. A. Buntine and J. H. Bowie, J. Chem. Soc., Perkin Trans. 2, 1997, 1991 RSC.
  2. S. Dua, M. S. Taylor, M. A. Buntine and J. H. Bowie, Int. J. Mass Spectrom. Ion Processes, 1997, 165/166, 139 CrossRef.
  3. J. M. Hevko, S. Dua, J. H. Bowie and M. S. Taylor, J. Chem. Soc., Perkin Trans. 2, 1998, 1629 RSC.
  4. J. M. Hevko, S. Dua, M. S. Taylor and J. H. Bowie, Int. J. Mass Spectrom., 1998, in the press Search PubMed.
  5. L. Tenud, S. Farook, J. Seibl and A. Eshenmoser, Helv. Chim. Acta, 1970, 53, 2059 CrossRef CAS.
  6. G. Stork and J. F. Cohen, J. Am. Chem. Soc., 1974, 96, 5270 CrossRef CAS.
  7. J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734 RSC; J. E. Baldwin, Further Perspectives in Organic Chemistry, A Ciba Foundation Symposium, Elsevier, Amsterdam, 1978, 85 Search PubMed.
  8. GAUSSIAN 94, Revision C3, M. J. Frisch, G. W. Trucks, H. B. Schlegal, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. V. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  9. S. W. Benson, Thermochemical Kinetics, Wiley, New York 1967 Search PubMed.
  10. R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell Scientific, Cambridge, 1990 Search PubMed.
  11. A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502 CrossRef CAS.
  12. J. P. A. Heuts, R. G. Gilbert and L. Radom, Macromolecules, 1995, 28, 8771 CrossRef CAS.
  13. J. H. Bowie and T. Blumenthal, J. Am. Chem. Soc., 1975, 97, 2959 CrossRef CAS; I. Howe, J. H. Bowie, J. E. Szulejko and J. H. Beynon, Int. J. Mass Spectrom. Ion Processes, 1980, 34, 99.
  14. S. Dua, R. A. J. O'Hair, J. H. Bowie and R. N. Hayes, J. Chem. Soc., Perkin Trans. 2, 1992, 1151 RSC.
  15. VG ZAB 2HF, VG Analytical, Manchester, UK.
  16. M. B. Stringer, J. L. Holmes and J. H. Bowie, J. Am. Chem. Soc., 1986, 108, 3888 CrossRef CAS.
  17. T. Shono, Y. Matsumua, O. Onomura and Y. Yamada, Synthesis, 1987, 12, 1099 CrossRef.
  18. K. Nishitani, Y. Harada, Y. Nakamura, K. Yokoo and Y. Yamakawa, Tetrahedron Lett., 1994, 35, 7809 CrossRef CAS.
  19. M. Mihailovic and D. Marinkovic, Croatica Chem. Acta, 1986, 59, 109 Search PubMed.
  20. S. Martin, C. Tu and T. Chou, J. Am. Chem. Soc., 1980, 102, 5274 CrossRef CAS.
  21. J. Appo Rao and M. P. Cava, J. Org. Chem., 1989, 54, 2751 CrossRef CAS.
  22. E. J. Eisenbraun, Org. Syn. Coll. Vol. 5, 1973, 5274 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.