The OH radical-induced chain reactions of methanol with hydrogen peroxide and with peroxodisulfate

(Note: The full text of this document is currently only available in the PDF Version )

Piotr Ulanski and Clemens von Sonntag


Abstract

Hydroxymethyl radicals, ˙CH2OH, were generated radiolytically in the reaction of OH radicals with methanol. In the presence of H2O2 they yield formaldehyde via a chain reaction which regenerates an OH radical [reaction (2)]. G(CH2O) first increases with increasing H2O2 concentration and with the inverse of the square root of the dose rate, eventually reaching a plateau near G(CH2O) ≈ 65 × 10–7 mol J–1. This indicates that besides the bimolecular termination of the CH2OH radicals there must be an additional termination reaction of (pseudo-)first-order kinetics which is attributed to an H-abstraction from H2O2 by CH2OH [reaction (12)].The data have been fitted using k2 = 6 × 104 dm3 mol–1 s–1 and k12 = 2.75 × 103 dm3 mol–1 s–1. In basic solution the chain length first becomes longer because the anion of the ˙CH2OH radical, ˙CH2O [pKa(˙CH2OH) = 10.7] rapidly transfers an electron to H2O2 (k = 4 × 105 dm3 mol–1 s–1). Upon further increasing the pH, i.e. when the anion of H2O2 starts to become of importance [pKa(H2O2) = 11.6] the chain length drops again. The data can be fitted assuming that ˙CH2O is not capable of transferring an electron to HO2 at an appreciable rate and that the H-abstraction reaction from HO2 is considerably faster (k = 2.9 × 104 dm3 mol–1 s–1) than from H2O2.


References

  1. B. C. Gilbert, R. O. C. Norman and R. C. Sealy, J. Chem. Soc., Perkin Trans. 2, 1974, 824 RSC.
  2. C. E. Burchill and J. S. Ginns, Can. J. Chem., 1970, 48, 2628.
  3. W.-F. Wang, M. N. Schuchmann, V. Bachler, H.-P. Schuchmann and C. von Sonntag, J. Phys. Chem., 1996, 100, 15843 CrossRef CAS.
  4. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513 CAS.
  5. C. von Sonntag, The Chemical Basis of Radiation Biology, Taylor and Francis, London, 1987 Search PubMed.
  6. K.-D. Asmus, H. Möckel and A. Henglein, J. Phys. Chem., 1973, 77, 1218 CrossRef CAS.
  7. H.-P. Schuchmann and C. von Sonntag, J. Photochem., 1981, 16, 289 CAS.
  8. D. F. McMillen and D. M. Golden, Annu. Rev. Phys. Chem., 1982, 33, 493 CrossRef CAS.
  9. P. S. Nangia and S. W. Benson, J. Phys. Chem., 1979, 83, 1138 CrossRef CAS.
  10. B. H. J. Bielski, D. E. Cabelli, R. L. Arudi and A. B. Ross, J. Phys. Chem. Ref. Data, 1985, 14, 1041 CAS.
  11. C. von Sonntag and H.-P. Schuchmann, in Peroxyl Radicals, ed. Z. B. Alfassi, Wiley, Chichester, 1997, p. 173 Search PubMed.
  12. H.-P. Schuchmann and C. von Sonntag, Radiat. Phys. Chem., 1988, 32, 149 CAS.
  13. H. Eibenberger, S. Steenken, P. O'Neill and D. Schulte-Frohlinde, J. Phys. Chem., 1978, 82, 749 CrossRef CAS.
  14. K.-D. Asmus, A. Henglein, A. Wigger and G. Beck, Ber. Bunsenges. Phys. Chem., 1966, 70, 756 Search PubMed.
  15. G. P. Laroff and R. W. Fessenden, J. Phys. Chem., 1973, 77, 1283 CrossRef CAS.
  16. K. Kishore, P. N. Moorthy and K. N. Rao, Radiat. Phys. Chem., 1987, 29, 309 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.