Absolute proton affinities of biphenyl and its derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Zvonimir B. Maksić, Danijela Barić and Borislav Kovačević


Abstract

The spatial structure of biphenyl 1 is studied by the semiempirical AM1 and ab initio HF/6-31G* and MP2(fc)/6-31G* theoretical models. The resulting bond distances are in good agreement with the X-ray structure. The calculated dihedral angle is in accordance with the value observed by the electron diffraction technique (ϕ = 45°). Its large value is a compromise between the steric hindrance effect and the π-electron conjugation. The estimated barrier heights for the internal rotation are very low however. Theoretical values are in accordance with the available experimental evidence. The calculated proton affinity (PA) obtained by the scaled (AM1)sc model and by using the MP2 level of theory compares very well with the experimental value. It is some 13 kcal mol–1 higher than the reference PA value of benzene, because of the strong resonance interaction between the two phenyl rings. The increase in the π-electron conjugation energy triggered by protonation overcomes the steric repulsion between H atoms thus decreasing the twist angle by some 20°. The apical carbon atom, placed para to the coannular CC bond, is most susceptible to the proton attack. On the other hand, the PA values for ipso and meta carbons are substantially lower since an amplification of the inter-ring conjugation interaction is then precluded. The PA increments for the CH3 group and F atom monosubstituted biphenyls are determined by using the (AM1)sc approach. They are employed in estimating proton affinities of a number of polysubstituted biphenyls applying a very simple additivity formula based on the independent substituent approximation (ISA). It is shown that the performance of the additivity rule is very good. Variation in the PA of substituted biphenyls is rationalized in terms of the conjugation effect and repulsion between hydrogen atoms or substituents attached to the face-to-face ortho positions of the neighbouring rings (steric effect).

Finally, the proton affinity of fluorene possessing a “frozen” planar biphenyl moiety is calculated and compared with that of the paradigmatic Mills–Nixon (MN) system—indan. It is found that PA values of the former compound are determined by the MN and resonance effects, the latter being predominant. The most basic site in fluorene is the C(4) atom where both effects act in a synergistic way.


References

  1. R. W. Alder, P. S. Bowman, W. R. S. Steele and D. R. Winterman, J. Chem. Soc., Chem. Commun., 1968, 723 RSC.
  2. R. W. Alder, Chem. Rev., 1989, 89, 1215 CrossRef CAS.
  3. A. L. Llamas-Saiz, C. Foces-Foces and J. Elguero, J. Mol. Struct., 1994, 328, 297 CrossRef.
  4. R. W. Alder, Tetrahedron, 1990, 46, 683 CrossRef CAS.
  5. F. Hibbert and J. Emsley, Adv. Phys. Org. Chem., 1990, 26, 255 CAS.
  6. R. Grigg, P. McMeekin and V. Sridharan, Tetrahedron, 1995, 13331 CAS.
  7. K. Platteborze-Stienlet and T. Zeegers-Huyskens, J. Mol. Struct., 1996, 378, 29 CrossRef CAS.
  8. B. Brzezinski, E. Grech, Z. Malarski, M. Rospenk, G. Schroeder and L. Sobczyk, J. Chem. Res. (S), 1997, 151 RSC.
  9. K. Wozniak, H. He, J. Klinowski, W. Jones and T. L. Barr, J. Phys. Chem., 1995, 99, 14667 CrossRef CAS.
  10. A. I. Gonzáles, O. Mó, M. Yañez, E. Léon, J. Tortajada, J. P. Morizur, I. Leito, P.-C. Maria and J. F. Gal, J. Phys. Chem., 1996, 10490 CrossRef.
  11. B. Amekraz, J. Tortajada, J. P. Morizur, A. I. Gonzáles, O. Mó, M. Yañez, I. Leito, P.-C. Maria and J. F. Gal, New J. Chem., 1996, 1011 Search PubMed.
  12. M. J. Paräkylä, J. Org. Chem., 1996, 61, 7420 CrossRef CAS.
  13. A. Szemila-Hojniak, J. M. Zwier, W. J. Buma, R. Bursi and J. H. van der Waals, J. Am. Chem. Soc., 1998, 120, 4840 CrossRef CAS.
  14. E. Fujiwara, K. Omoto and H. Fujimoto, J. Org. Chem., 1997, 7234 CrossRef CAS.
  15. R. A. Peerboom, S. Ingemann, N. M. M. Nibbering and J. F. Liebman, J. Chem. Soc., Perkin Trans. 2, 1990, 1825 RSC.
  16. E. D. Raczynska and R. W. Taft, Bull. Chem. Soc. Jpn., 1997, 1297 CAS.
  17. E. D. Raczynska, P.-C. Maria, J.-F. Gal and M. Decouzon, J. Phys. Org. Chem., 1994, 70, 725 CrossRef CAS.
  18. B. Kovačević, Z. B. Maksić and P. Rademacher, Chem. Phys. Lett., 1998, 293, 245 CrossRef CAS.
  19. B. Kovačević and Z. B. Maksić, Chem. Phys. Lett., 1998, 288, 289 CrossRef CAS.
  20. Z. B. Maksić and B. Kovačević, J. Phys. Chem. A, 1998, 102, 7324 CrossRef CAS.
  21. Z. B. Maksić and M. Eckert-Maksić, in Theoretical Organic Chemistry, C. Párkány, Ed., Elsevier, Amsterdam, 1998, p. 203 and references cited therein Search PubMed.
  22. Z. B. Maksić, B. Kovačević and D. Kovaček, J. Phys. Chem. A, 1997, 101, 7446 CrossRef CAS and references cited therein.
  23. G.-P. Charbonneau and Y. Delugeord, Acta Crystallogr., Sect. B, 1977, 33, 1586 CrossRef.
  24. O. Bastiansen and M. Traetteberg, Tetrahedron, 1962, 17, 147 CrossRef CAS; A. Almeningen, O. Bastiansen, L. Fernholt, B. N. Cyvin, S. J. Cyvin and S. Samdal, J. Mol. Struct., 1985, 128, 59 CrossRef CAS; O. Bastiansen and S. Sandal, J. Mol. Struct., 1985, 128, 115 CrossRef CAS.
  25. H. Suzuki, Bull. Chem. Soc. Jpn., 1959, 32, 1340 CAS.
  26. E. C. Lim and Y. H. Li, J. Chem. Phys., 1970, 52, 6416 CrossRef CAS.
  27. V. J. Eaton and D. Steele, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 1601 RSC.
  28. H. Uchimura, A. Tajiri and M. Hatano, Chem. Phys. Lett., 1975, 34, 34 CrossRef CAS; Bull. Chem. Soc. Jpn., 1981, 54, 3279 Search PubMed.
  29. M. Akiyama, T. Watanabe and M. Kakihana, J. Phys. Chem., 1986, 90, 1752 CrossRef CAS.
  30. E. Hunter, NIST, private communication.
  31. M. Eckert-Maksić, M. Klessinger and Z. B. Maksić, Chem. Eur. J., 1996, 2, 1251 CrossRef CAS.
  32. D. Kovaček, Z. B. Maksić and I. Novak, J. Phys. Chem. A, 1997, 101, 1147 CrossRef CAS.
  33. M. Eckert-Maksić, M. Klessinger and Z. B. Maksić, J. Phys. Org. Chem., 1997, 10, 415 CrossRef CAS.
  34. Z. B. Maksić, M. Eckert-Maksić and M. Klessinger, Chem. Phys. Lett., 1996, 26, 572 CrossRef.
  35. W. H. Mills and I. G. Nixon, J. Chem. Soc., 1930, 2510 RSC.
  36. Z. B. Maksić, M. Eckert-Maksić, M. Hodošček, W. Koch and D. Kovaček, in Molecules in Natural Sciences and Medicine—An Encomium for Linus Pauling, Z. B. Maksić and M. Eckert-Maksić, Ed., Ellis Horwood, Chichester, 1991, p. 333 Search PubMed.
  37. R. Rathore, S. V. Lindeman, A. S. Kumar and J. K. Kochi, J. Am. Chem. Soc., 1998, 120, 6012 CrossRef CAS and references cited therein.
  38. M. Eckert-Maksić, Z. B. Maksić and M. Klessinger, Int. J. Quantum Chem., 1994, 49, 383 CrossRef CAS.
  39. M. Eckert-Maksić, Z. B. Maksić and M. Klessinger, J. Chem. Soc., Perkin Trans. 2, 1994, 285 RSC.
  40. M. Eckert-Maksić, M. Klessinger, D. Kovaček and Z. B. Maksić, J. Phys. Org. Chem., 1996, 9, 269 CrossRef CAS.
  41. H. C. Brown, J. H. Brewster and H. Schechter, J. Am. Chem. Soc., 1954, 76, 467 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.