A molecular orbital study on a tetra-aza macrocycle containing 2,2′-bipyridines and its lithium complex

(Note: The full text of this document is currently only available in the PDF Version )

Keiko Takano, Ayako Furuhama, Shojiro Ogawa and Shinji Tsuchiya


Abstract

Singlet transition energies and oscillator strengths of two configurational isomers of a dicyano dibutyl tetra-aza macrocycle containing four pyridine rings and their lithium complexes were calculated using the CNDO/S CI method at ab initio RHF/3-21G optimized geometries. The results were in good agreement with those derived from the UV-Visible absorption spectra. The drastic spectral changes observed upon complexation in the trans-isomer were found to be due to the significant conformational change in the bipyridine moiety and the resulting energy separation of the frontier π orbitals. The close proximity between the triplet states and the singlet excited state suggested that the intersystem crossing might occur in the trans form of the lithium free macrocycle. This is one of the possible explanations of the large discrepancy in fluorescence intensities between the trans-isomer of the macrocycle and its lithium complex.


References

  1. (a) Asymmetric Synthesis, eds. J. D. Morrison and J. W. Scott, Academic Press, 1984 Search PubMed; (b) D. A. Evans, M. M. Faul, L. Colombo, J. J. Bisaha, J. Clardy and D. Cherry, J. Am. Chem. Soc., 1992, 114, 5977 CrossRef CAS.
  2. (a) D. J. Cram, Science, 1988, 240, 760 CAS; (b) J. R. Rebek, Science, 1987, 235, 1478 CAS; (c) J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89 CrossRef; (d) T. J. Marrone and K. M. Merz, Jr., J. Am. Chem. Soc., 1992, 114, 7542 CrossRef CAS; (e) G. Muller, J. Rirde and E. P. Schmidtchen, Angew. Chem., Int. Ed. Engl., 1988, 27, 1516 CrossRef; (f) A. Echavarren, A. Galan, J. M. Lehn and J. de Mendoza, J. Am. Chem. Soc., 1989, 111, 4994 CrossRef CAS; (g) F. Garcia-Tellado, S. Goswami, S. K. Chang, S. J. Geib and A. D. Hamilton, J. Am. Chem. Soc., 1990, 112, 7393 CrossRef CAS; (h) A. Bencini, A. Bianchi, M. I. Burguete, E. Garcia-Espana, S. V. Luis and J. A. Ramirez, J. Am. Chem. Soc., 1992, 114, 1919 CrossRef CAS.
  3. R. M. Izatt and J. J. Christensen, Synthetic Multidentate Macrocyclic Compounds, Academic Press, New York, 1978 Search PubMed.
  4. A. W. Czanik, Frontiers in Supramolecular Organic Chemistry and Photochemistry, VCH, Weinheim, 1991 Search PubMed.
  5. (a) S. Ogawa, R. Narushima and Y. Arai, J. Am. Chem. Soc., 1984, 106, 5760 CrossRef CAS; (b) S. Ogawa, T. Uchida, T. Hirano, M. Saburi and Y. Uchida, J. Chem. Soc., Perkin Trans. 1, 1990, 1647 Search PubMed; (c) S. Ogawa and S. Tsuchiya, Chem. Lett., 1996, 709 CAS.
  6. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515 CrossRef.
  7. (a) W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys., 1969, 51, 2657 CrossRef CAS; (b) W. J. Hehre, R. Ditchfield, R. F. Stewart and J. A. Pople, J. Chem. Phys., 1970, 52, 2769 CrossRef CAS; (c) W. J. Pietro and W. J. Hehre, J. Comput. Chem., 1983, 4, 241 CrossRef CAS.
  8. (a) J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., 1980, 102, 939 CrossRef CAS; (b) M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, J. Am. Chem. Soc., 1982, 104, 2797 CrossRef CAS; (c) K. D. Dobbs and W. J. Hehre, J. Comput. Chem., 1987, 8, 861 CrossRef CAS; (d) K. D. Dobbs and W. J. Hehre, J. Comput. Chem., 1987, 8, 880 CrossRef CAS.
  9. M. W. Schmidt, K. K. Baldridge, J. A. Boats, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, T. L. Windus, M. Dupui and J. A. Montgomery, Jr., J. Comput. Chem., 1993, 14, 1347 CrossRef CAS.
  10. R. Pariser and R. G. Parr, J. Chem. Phys., 1953, 21, 767 CrossRef CAS.
  11. MOPAC97 and MOS-FV4 programs in WinMOPAC ver. 2.0 for Windows 95 and NT4.0, Fujitsu Limited.
  12. S. T. Howard, J. Am. Chem. Soc., 1996, 118, 10269 CrossRef CAS.
  13. Another cis-isomer with the cyano groups inside instead of outside (Fig. 1c) was successful in geometry optimization and was estimated to be less stable in energy. Therefore only the latter will be discussed in this paper. The geometric features of the bipyridine moiety and the spectroscopic features were very similar between the two cis-isomers.
  14. The lithium complex with C1 symmetry has two non-equivalent positions of the bipyridine moiety with dihedral angles of –1.4 and 5.4 degrees. In Fig. 6 only the values for the former one are shown.
Click here to see how this site uses Cookies. View our privacy policy here.