Experimental and theoretical studies of a chiral azulenophane: synthesis, structure and circular dichroism spectra of 14,17-dimethyl[2](1,3)azuleno[2]paracyclophane

(Note: The full text of this document is currently only available in the PDF Version )

Stefan Grimme, Wolfram Mennicke, Fritz Vögtle and Martin Nieger


Abstract

The synthesis of 14,17-dimethyl[2](1,3)azuleno[2]paracyclophane 2c was achieved by dithia[3.3]phane cyclisation and photodesulfurization. The enantiomeric separation of the planar chiral (±2c) was performed by HPLC on cellulose carbamate and the circular dichroism (CD) spectrum is reported. The results of theoretical density functional calculations combined with a random phase approximation (DFT/RPA) approach for the CD spectrum compare well with the experimental data in the recorded energy range (1.5–6.5 eV). A good agreement between the X-ray structure and the theoretically optimized ground state geometry could only be achieved at the correlated ab initio MP2 level. The character of the excited states could be assigned and qualitatively analyzed with data obtained for azulene and dimethyl[7]paracyclophane as model chromophores. It is found that most of the seven experimentally resolved bands can be interpreted as perturbed locally excited transitions in the two chromophoric units. Charge transfer π→π states between the benzene and azulene fragments are found at relatively low energies (>3.2 eV) but they have low rotatory strengths. Furthermore, the CD intensities of the locally excited benzene type π→π(E1u) states are amplified in the phane by a factor of about ten due to the presence of the azulene chromophore. By comparison of theoretical and experimental CD data the absolute configuration of 2c could be assigned as [CD(–)638, CD(+)218] = (S[hair space]).


References

  1. H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules, Academic Press, New York, 1967 Search PubMed.
  2. S. Grimme, S. D. Peyerimhoff, S. Bartram, F. Vögtle, A. Breest and J. Hormes, Chem. Phys. Lett., 1993, 213, 32 CrossRef CAS.
  3. D. Wortmann-Saleh, S. Grimme, B. Engels, D. Müller and F. Vögtle, J. Chem. Soc., Perkin Trans. 2, 1995, 1185 RSC.
  4. I. Pischel, S. Grimme, S. Kotila, M. Nieger and F. Vögtle, Tetrahedron: Asymmetry, 1996, 7, 109 CrossRef CAS.
  5. I. Pischel, M. Nieger, A. Archut and F. Vögtle, Tetrahedron, 1996, 52, 10043 CrossRef CAS.
  6. S. Grimme, J. Harren, A. Sobanski and F. Vögtle, Eur. J. Org. Chem., 1998, 1491 CrossRef CAS.
  7. R. N. Armstrong, H. L. Ammon and J. N. Darnow, J. Am. Chem. Soc., 1987, 109, 2077 CrossRef CAS.
  8. V. Buss and K. Kolster, Chem. Phys., 1996, 203, 309 CrossRef CAS.
  9. S. Grimme and S. D. Peyerimhoff, Chem. Phys., 1996, 204, 411 CrossRef CAS.
  10. F. Vögtle, Cyclophane Chemistry, Wiley, New York, 1993 Search PubMed; F. Vögtle, Cyclophan-Chemie, B. G. Teubner, Stuttgart, 1990 Search PubMed.
  11. S. Grimme, Chem. Phys. Lett., 1993, 201, 67 CrossRef CAS.
  12. R. Luhowy and P. M. Keen, Tetrahedron Lett., 1976, 1043 CrossRef CAS.
  13. N. Kato, Y. Fukazawa and S. Itô, Tetrahedron Lett., 1976, 2045 CrossRef CAS.
  14. S. Itô, Pure Appl. Chem., 1982, 54, 957 CAS.
  15. P. L. Case, E. W. Thulstrup and J. Michl, Chem. Phys., 1974, 6, 410 CrossRef CAS.
  16. W. Gerhartz and J. Michl, J. Am. Chem. Soc., 1978, 100, 6877 CrossRef CAS.
  17. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, New York, 1970 Search PubMed.
  18. Y. Fukazawa, M. Aoyagi and S. Itô, Tetrahedron Lett., 1978, 1067 CrossRef CAS.
  19. B. O. Roos, M. Fülscher, P.-A. Malmqvist, M. Merchan and L. Serrano-Andres, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, (S. R. Langhoff, ed.), Kluwer Academic Publishers, Dordrecht, 1995 Search PubMed.
  20. S. Grimme, Chem. Phys. Lett., 1996, 259, 128 CrossRef CAS.
  21. S. Grimme, I. Pischel, S. Laufenberg and F. Vögtle, Chirality, 1998, 10, 147 CrossRef CAS.
  22. S. Grimme and S. D. Peyerimhoff, in Rydberg States in Spectroscopy and Photochemistry: Low and High Rydberg States, (C. Sandorfy, ed.), Kluwer Academic Publishers, Dordrecht, 1998 Search PubMed.
  23. T. D. Bouman and A. E. Hansen, J. Chem. Phys., 1977, 66, 3460 CrossRef CAS.
  24. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Chem. Phys. Lett., 1989, 162, 165 CrossRef CAS.
  25. O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, 102, 346 CrossRef CAS.
  26. T. H. Dunning and P. J. Hay, in Modern Theoretical Chemistry Vol. 3: Methods of Electronic Structure Theory, (ed. H. F. Schaefer III), Plenum Press, New York, 1977 Search PubMed.
  27. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  28. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623 CrossRef CAS.
  29. F. Weigend and M. Häser, Theor. Chem. Acc., 1997, 97, 331 CrossRef CAS.
  30. A. G. Anderson, R. G. Anderson and T. S. J. Fujita, J. Org. Chem., 1962, 27, 4535 CAS.
  31. P. Knops, N. Sendhoff, H. B. Mekelburger and F. Vögtle, Top. Curr. Chem., 1992, 161, 1 CAS.
  32. Y. Okamoto, J. R. Aburalant, K. Hatamo and K. Hatada, J. Liq. Chromatogr., 1988, 11, 2147 CAS; Y. Okamoto and E. Yashima, Angew. Chem., 1998, 110, 1072 CrossRef; Angew. Chem., Int. Ed. Engl, 1998, 37, 1020 Search PubMed.
  33. M. Habel, C. Niederalt, S. Grimme, M. Nieger and F. Vögtle, Eur. J. Org. Chem., 1998, 1471 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.