Stability of 1∶1 and 2∶1 α-cyclodextrin–p-nitrophenyl acetate complexes and the effect of α-cyclodextrin on acyl transfer to peroxide anion nucleophiles

(Note: The full text of this document is currently only available in the PDF Version )

D. Martin Davies and Michael E. Deary


Abstract

The presence of a rate maximum rather than simple saturation-type kinetics in a study of the effect of α-cyclodextrin on the hydrolysis of p-nitrophenyl acetate (PNPA) indicates that α-cyclodextrin forms not only 1∶1 but also 2∶1 complexes with PNPA. This is confirmed using a spectrophotometric method to determine binding constants directly for PNPA, giving values of 46 ± 9 and 66 ± 19 dm3 mol–1 for the first and second binding steps respectively. These results contradict the majority of literature studies of this reaction in which it is assumed that only a 1∶1 complex is formed. Formation of a 1∶1 complex with cyclodextrin increases the reactivity of PNPA towards hydrolysis, as has been widely reported, whereas the addition of a second cyclodextrin molecule to the complex results in the PNPA taking up a less reactive configuration. The effect of α-cyclodextrin on the reaction between PNPA and the anions of hydrogen peroxide, peroxomonosulfate, peracetic acid, perbenzoic acid, 4-methylperbenzoic acid, 4-nitroperbenzoic acid, 4-sulfonatoperbenzoic acid, 3-chloroperbenzoic acid and 4-tert-butylperbenzoic acid is described. Linear free energy studies for transition state stabilisation of the reaction by one molecule of cyclodextrin reveal that the main pathway involves the bound PNPA reacting with free peroxide anions, although for m-chloroperbenzoic acid an alternative pathway may be significant. This is in contrast to the behaviour observed for the α-cyclodextrin-mediated reaction of the molecular acid form of these peroxides with a series of aryl alkyl sulfides in which the main pathway involves nucleophilic attack of the free sulfide on the cyclodextrin–peracid complex. With the exception of the m-chloroperbenzoic acid anion there is no evidence of transition state stabilisation of the title reaction by two molecules of cyclodextrin.


References

  1. (a) J. L. Kurz, J. Am. Chem. Soc., 1963, 85, 987 CrossRef CAS; (b) O. S. Tee, Carbohydr. Res., 1989, 192, 181 CrossRef CAS; (c) O. S. Tee, Adv. Phys. Org. Chem., 1994, 29, 1 CAS.
  2. D. M. Davies and M. E. Deary, J. Chem. Soc., Perkin Trans. 2, 1996, 2423 RSC.
  3. D. M. Davies, G. A. Garner and J. R. Savage, J. Chem. Soc., Perkin Trans. 2, 1994, 1531 RSC.
  4. (a) D. W. Griffiths and M. L. Bender, Adv. Catal., 1973, 23, 209 CAS; (b) M. L. Bender and M. Komiyama, Cyclodextrin Chemistry, Springer Verlag, Berlin, 1978 Search PubMed.
  5. (a) R. Curci and J. O. Edwards, in Organic Peroxides, Vol. 1, D. Swern, Ed., John Wiley and Sons Inc., New York, 1970, Ch. 4 Search PubMed; (b) R. Curci and J. O. Edwards, in Catalytic Oxidations with H2O2 as oxidants, G. Strukul, Ed., Reidel Kluwer, Dordrecht, The Netherlands, 1992, Ch. 3 Search PubMed.
  6. O. S. Tee and J. M. Bennett, J. Am. Chem. Soc., 1988, 110, 3226 CrossRef CAS.
  7. N. Yoshida, J. Chem. Soc., Perkin Trans. 2, 1995, 2249 RSC.
  8. D. M. Davies and M. E. Deary, J. Chem. Soc., Perkin Trans. 2, 1996, 2415 RSC.
  9. (a) D. M. Davies and M. E. Deary, J. Chem. Res. (M), 1988, 2720 Search PubMed; (b) D. M. Davies and M. E. Deary, J. Chem. Res. (S), 1988, 354 Search PubMed.
  10. D. M. Davies and P. Jones, J. Org Chem., 1978, 43, 769 CrossRef CAS.
  11. O. S. Tee, C. Mazza and X.-X. Du, J. Org. Chem., 1990, 55, 3603 CrossRef CAS.
  12. G. M. Bonora, J. Chem. Soc., Perkin Trans. 2, 1985, 367 RSC.
  13. C. J. Easton, S. Kassara, S. F. Lincoln and B. L. May, Aust. J. Chem., 1995, 48, 269 CAS.
  14. (a) R. L. Van Etten, J. F. Sebastian, G. A. Clowes and M. L. Bender, J. Am. Chem. Soc., 1967, 89, 3242 CrossRef CAS; (b) R. L. Van Etten, J. F. Sebastian, G. A. Clowes and M. L. Bender, J. Am. Chem. Soc., 1967, 89, 3253 CrossRef CAS.
  15. F. Cramer and H. Hettler, Naturwissenschaften, 1967, 54, 625 CAS.
  16. O. S. Tee and J. J. Hoeven, J. Am. Chem. Soc., 1989, 111, 8318 CrossRef CAS.
  17. (a) O. S. Tee and T. A. Gadosy, J. Chem. Soc., Perkin Trans. 2, 1994, 2191 RSC; (b) O. S. Tee and T. A. Gadosy, J. Chem. Soc., Perkin Trans. 2, 1994, 715 RSC.
  18. T. A. Gadosy and O. S. Tee, J. Chem. Soc., Perkin Trans. 2, 1994, 2307 RSC.
  19. O. S. Tee and T. A. Gadosy, J. Chem. Soc., Perkin Trans. 2, 1995, 71 RSC.
  20. O. S. Tee, T. A. Gadosy and J. B. Giorgi, Can. J. Chem., 1997, 83 CAS.
  21. M. E. Deary, PhD Thesis, Newcastle upon Tyne Polytechnic, UK, 1990.
  22. S.-F. Lin and K. A. Connors, J. Pharm. Sci., 1983, 72, 1333 CrossRef CAS.
  23. D. M. Davies and M. E. Deary, J. Chem. Soc., Perkin Trans. 2, 1995, 1287 RSC.
  24. D. M. Davies and J. R. Savage, J. Chem. Soc., Perkin Trans. 2, 1994, 1525 RSC.
  25. R. I. Gelb, L. M. Schwartz, R. F. Johnson and D. A. Laufer, J. Am. Chem. Soc., 1979, 101, 1869 CrossRef CAS.
  26. J. F. Wojcik and R. P. Rohrbach, J. Phys. Chem., 1975, 79, 2251 CrossRef CAS.
  27. D. M. Davies and M. E. Deary, J. Phys. Org. Chem., 1996, 9, 433 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.