Kinetic study on the reaction of tributylphosphine with methylviologen. Reactivity of the phosphine radical cation intermediate towards nucleophiles

(Note: The full text of this document is currently only available in the PDF Version )

Shinro Yasui, Kosei Shioji, Munekazu Tsujimoto and Atsuyoshi Ohno


Abstract

Tributylphosphine, Bun3P (BP), was reacted with 1,1′-dimethyl-4,4′-bipyridinium (methylviologen; MV2+) in the presence of an alcohol or thiol (RXH; X = O, S) in acetonitrile under an argon atmosphere at 50 °C, which resulted in the gradual formation of the one-electron reduced form of the MV2+, MV+. Meanwhile, BP was oxidized to tributylphosphine oxide (BP-O). The increase in the amount of MV+, which was followed spectrophotometrically with BP and RXH being in large excess, did not obey first-order kinetics. The observation, along with the results from product analysis, shows that single-electron transfer (SET) takes place from BP to MV2+ to generate tributylphosphine radical cation BP˙+, as well as MV+, and the resulting BP˙+ undergoes ionic reaction with RXH and back electron transfer from MV+ in comparable efficiency. A regression analysis of the kinetic data gave the relative value of the second-order rate constant, kNurel, for the ionic reaction of BP˙+ with RXH. Comparison of the kNurel values thus obtained for reactions with various RXH’s shows that the reaction of BP˙+ with nucleophile RXH is governed by both steric and electronic factors of RXH. The activation energy Ea of the reaction was found to be significantly large, which is in contrast to previous observations that ionic reactions of carbon radical cations with nucleophiles usually have very small values of Ea.


References

  1. G. Schiavon, S. Zecchin and G. Cogoni, Electroanal. Chem. Interfacial Electrochem., 1973, 48, 425 CrossRef CAS.
  2. (a) W. B. Gara and B. P. Roberts, J. Chem. Soc., Chem. Commun., 1975, 949 RSC; (b) W. B. Gara and B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1978, 150 RSC.
  3. H. Ohmori, T. Takanami and M. Masui, Tetrahedron Lett., 1985, 26, 2199 CrossRef CAS.
  4. M. Culcasi, Y. Berchadsky, G. Gronchi and P. Tordo, J. Org. Chem., 1991, 56, 3537 CrossRef CAS.
  5. B. W. Fullam and M. C. R. Symons, J. Chem. Soc., Dalton Trans., 1975, 861 RSC.
  6. C. M. L. Kerr, K. Webster and F. Williams, J. Phys. Chem., 1975, 79, 2650 CrossRef CAS.
  7. G. W. Eastland and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1977, 833 RSC.
  8. R. L. Powell and C. D. Hall, J. Am. Chem. Soc., 1969, 91, 5403 CrossRef CAS.
  9. (a) S. Yasui, M. Fujii, C. Kawano, Y. Nishimura and A. Ohno, Tetrahedron Lett., 1991, 32, 5601 CrossRef CAS; (b) S. Yasui, M. Fujii, C. Kawano, Y. Nishimura, K. Shioji and A. Ohno, J. Chem. Soc., Perkin Trans. 2, 1994, 177 RSC; (c) S. Yasui, K. Shioji and A. Ohno, Tetrahedron Lett., 1994, 35, 2695 CrossRef CAS; (d) S. Yasui, K. Shioji and A. Ohno, Heteroat. Chem., 1995, 6, 223 CAS.
  10. M. Ochiai, M. Kunishima, Y. Nagao, K. Fuji and E. Fujita, J. Chem. Soc., Chem. Commun., 1987, 1708 RSC.
  11. (a) S. Yasui and A. Ohno, Tetrahedron Lett., 1991, 32, 1047 CrossRef CAS; (b) S. Yasui, K. Shioji, M. Yoshihara, T. Maeshima and A. Ohno, Tetrahedron Lett., 1992, 33, 7189 CrossRef CAS; (c) S. Yasui, K. Shioji, A. Ohno and M. Yoshihara, Chem. Lett., 1993, 1393 CAS; (d) S. Yasui, K. Shioji, A. Ohno and M. Yoshihara, J. Org. Chem., 1995, 60, 2099.
  12. G. Pandey, D. Pooranchand and U. T. Bhalerao, Tetrahedron, 1991, 47, 1745 CrossRef CAS.
  13. D. Camp, G. R. Hanson and I. D. Jenkins, J. Org. Chem., 1995, 60, 2977 CrossRef CAS.
  14. S. Ganapathy, K. P. Dockery, A. E. Sopchik and W. G. Bentrude, J. Am. Chem. Soc., 1993, 115, 8863 CrossRef CAS.
  15. H. Ohmori, K. Sakai, N. Nagai, Y. Mizuki and M. Masui, Chem. Pharm. Bull., 1985, 33, 373 CAS.
  16. T. M. Bockman and J. K. Kochi, J. Org. Chem., 1990, 55, 4127 CrossRef CAS.
  17. K. Kalyanasundaram, T. Colassis, R. Humphry-Baker, P. Savarino, E. Barni, E. Pelizzetti and M. Grätzel, J. Am. Chem. Soc., 1989, 111, 3300 CrossRef CAS.
  18. S. Sankararaman, K. B. Yoon, T. Yabe and J. K. Kochi, J. Am. Chem. Soc., 1991, 113, 1419 CrossRef CAS.
  19. M. Z. Hoffman, D. R. Prasad, G. Jones, II and V. Malba, J. Am. Chem. Soc., 1983, 105, 6360 CrossRef.
  20. T. Endo, Y. Saotome and M. Okawara, J. Am. Chem. Soc., 1984, 106, 1124 CrossRef CAS.
  21. E. H. Yonemoto, G. B. Saupe, R. H. Schmehl, S. M. Hubig, R. L. Riley, B. L. Iverson and T. E. Mallouk, J. Am. Chem. Soc., 1994, 116, 4786 CrossRef CAS.
  22. X. Xu, K. Shreder, B. L. Iverson and A. J. Bard, J. Am. Chem. Soc., 1996, 118, 3656 CrossRef CAS.
  23. S. Yasui, K. Shioji, M. Tsujimoto and A. Ohno, Chem. Lett., 1995, 783 CAS.
  24. The absorption maximum of the longer wavelength observed in our study was slightly blue-shifted compared with the maximum (608 nm) observed for the PF6 salt in an aprotic solvent such as acetonitrile, dichloromethane, or THF (ref. 16). This shift could result either from the large amount of alcohol present in our reaction system or from the difference in the counter anion of MV+.
  25. The UV–visible spectrum showed isosbestic points at 260 and 294 nm.
  26. In spite of repeated distillation on calcium hydride, the acetonitrile used contained about 5 × 10–2 mol dm–3 water (ref. 11c).
  27. C. P. Andrieux, C. Blocman, J.-M. Dumas-Bouchiat and J.-M. Savéant, J. Am. Chem. Soc., 1979, 101, 3431 CrossRef CAS.
  28. For a comprehensive work on dissociative SET, see J.-M. Savéant, Acc. Chem. Res., 1993, 26, 455 Search PubMed.
  29. J. Grimshaw, J. R. Langan and G. A. Salmon, J. Chem.Soc., Faraday Trans., 1994, 90, 75 RSC.
  30. M. S. Workentin and R. L. Donkers, J. Am. Chem. Soc., 1998, 120, 2664 CrossRef CAS.
  31. S. Antonello and F. Maran, J. Am. Chem. Soc., 1998, 120, 5713 CrossRef CAS.
  32. G. B. Schuster, J. Am. Chem. Soc., 1979, 101, 5851 CrossRef CAS.
  33. S. Bank and D. A. Juckett, J. Am. Chem. Soc., 1975, 97, 567 CrossRef CAS.
  34. H. C. Gardner and J. K. Kochi, J. Am. Chem. Soc., 1975, 97, 1855 CrossRef CAS.
  35. T. W. Chan and T. C. Bruice, J. Am. Chem. Soc., 1977, 99, 7287 CrossRef CAS.
  36. M. J. Thomas and C. S. Foote, Photochem. Photobiol., 1978, 27, 683 CAS.
  37. S. Yasui, K. Itoh, M. Tsujimoto and A. Ohno, Chem. Lett., 1998, 1019 CAS.
  38. A. G. Davies, D. Griller and B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1972, 2224 RSC.
  39. (a) W. G. Bentrude, J.-J. L. Fu and P. E. Rogers, J. Am. Chem. Soc., 1973, 95, 3625 CrossRef; (b) W. G. Bentrude, Acc. Chem. Res., 1982, 15, 117 CrossRef CAS.
  40. L. Horner, F. Röttger and H. Fuchs, Chem. Ber., 1963, 96, 3141 CAS.
  41. T.-L. Ho, in Hard and Soft Acids and Bases Principle in Organic Chemistry, Academic Press, New York, 1977 Search PubMed.
  42. K. E. DeBruin and S. Chandrasekaran, J. Am. Chem. Soc., 1973, 95, 974 CrossRef CAS.
  43. E. Bosch and J. K. Kochi, J. Org. Chem., 1995, 60, 3172 CrossRef CAS.
  44. The condition is likely to hold in the present reaction. Apparently, k23k21 and k32k34, so the Wrst term in the denominator reduces to k43[MV+]. The value of k43 can be diffusion-limited, but since [MV+] is much smaller than [ROH] under the experimental conditions, the term k43[MV+] is not too large to be compared with the term kNu[ROH].
  45. C. J. Schlesener and J. K. Kochi, J. Org. Chem., 1984, 49, 3142 CrossRef CAS.
  46. E. Baciocchi, M. Bietti and M. Mattioli, J. Org. Chem., 1993, 58, 7106 CrossRef CAS.
  47. L. Eberson, J. Am. Chem. Soc., 1983, 105, 3192 CrossRef CAS.
  48. N. M. D. Brown, D. J. Cowley and W. J. Murphy, J. Chem. Soc., Chem. Commun., 1973, 592 RSC.
  49. T. W. Ebbesen and G. Ferraudi, J. Phys. Chem., 1983, 87, 3717 CrossRef CAS.
  50. That there are some uncertainties in the rate constant for the reaction with methanol is why we take kNuEtOH(not kNuMeOH) as the standard in calculating the relative value of kNu, kNurel.
  51. R. W. Taft, Jr., J. Am. Chem. Soc., 1952, 74, 3120 CrossRef CAS.
  52. To accommodate our data to Taft's equation, kNuROH/kNuMeOH was used here instead of kNurel=kNuROH/kNuEtOH.
  53. N. S. Isaacs, in Physical Organic Chemistry, Wiley, New York, 1987, pp. 299–300 Search PubMed.
  54. The results in Table 5 also support our conclusion in the previous section that the observed rate is independent of the decomposition of the phosphonium intermediate. When butane-1,4-diol is a nucleophile, the decomposition of the corresponding phosphonium intermediate could be facilitated by formation of a six-membered ring structure at the transition state. However, no augmentation in kNurel was appreciated in this reaction.
  55. S. Kobayashi, T. Kitamura, H. Taniguchi and W. Schnabel, Chem. Lett., 1983, 1117 CAS.
  56. S. Steenken and R. A. McClelland, J. Am. Chem. Soc., 1990, 112, 9648 CrossRef CAS.
  57. J. Bartl, S. Steenken and H. Mayr, J. Am. Chem. Soc., 1991, 113, 7710 CrossRef CAS.
  58. (a) V. D. Parker, Acc. Chem. Res., 1984, 17, 243 CrossRef CAS; (b) V. D. Parker and M. Tilset, J. Am. Chem. Soc., 1987, 109, 2521 CrossRef CAS; (c) B. Reitstöen and V. D. Parker, J. Am. Chem. Soc., 1991, 113, 6954 CrossRef CAS; (d) M. S. Workentin, L. J. Johnston, D. D. M. Wayner and V. D. Parker, J. Am. Chem. Soc., 1994, 116, 8279 CrossRef CAS.
  59. (a) M. S. Workentin, N. P. Schepp, L. J. Johnston and D. D. M. Wayner, J. Am. Chem. Soc., 1994, 116, 1141 CrossRef CAS; (b) L. J. Johnston and N. P. Schepp, J. Am. Chem. Soc., 1993, 115, 6564 CrossRef CAS; (c) N. P. Schepp and L. J. Johnston, J. Am. Chem. Soc., 1996, 118, 2872 CrossRef CAS.
  60. (a) A. Pross, J. Am. Chem. Soc., 1986, 108, 3537 CrossRef CAS; (b) S. S. Shaik and A. Pross, J. Am. Chem. Soc., 1989, 111, 4306 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.