Chiroptical properties of the ketene and diazo chromophores. Part 2.1 Dissymmetric perturbing influence of α-alkyl substituents on the n–π* transitions in cyclic dialkylketenes and 2-diazoalkanes vs. cyclic ketones

(Note: The full text of this document is currently only available in the PDF Version )

Gennady V. Shustov, Fang Sun, Ted S. Sorensen and Arvi Rauk


Abstract

The relationship between the n–π* optical activity and the molecular geometry has been studied for structurally related ketones, ketenes, and diazoalkanes by theoretical and experimental methods. Ketones (4a–e), ketenes (5a–e), and diazoalkanes (6a–e) have a rigid bicyclo[2.2.1]heptane skeleton while ketenes (7a,b) have the less rigid cyclohexyl framework. Geometries were optimized at the B3LYP/6-31G* level and chiroptical properties were calculated by the CIS/6-31+G* method. The theoretical signs of the n–π* Cotton effects are in agreement with available experimental measurements: ketones 4a–e (literature data), ketenes 5d,e (this work), and diazoalkanes 6d,e (this work). All signs are correctly predicted from additive torsional dependencies of the n–π* optical rotational strengths {[R[hair space]]n–π*(ϕ) models}. The models reflect the dissymmetric perturbing influence of α-alkyl substituents while taking some account of the relative strain of the Cα–Cβ bonds. Analysis of the chiroptical properties of (2S,6S[hair space])-(2,6-dimethylcyclohex-ylidene)methanone 7b by means of the ketene [R[hair space]]n–π*(ϕ) model and of the ab initio calculations show that this compound exists preferentially in the form of a chair conformer, for which a fast degenerate ring conversion is typical.


References

  1. Part 1, G. V. Shustov, F. Sun, T. S. Sorensen and A. Rauk, J. Org. Chem., 1998, 63, 661 Search PubMed.
  2. (a) The Chemistry of Ketenes, Allenes, and Related Compounds, Parts 1, 2, ed. S. Patai, John Wiley & Sons, Inc., New York, 1982 Search PubMed; (b) T. T. Tidwell, Ketenes, John Wiley & Sons, Inc., New York, 1995 Search PubMed.
  3. (a) M. Regitz and G. Maas, Diazo Compounds, Properties and Synthesis, Academic Press, Inc., New York, 1986 Search PubMed; (b) H. Zollinger, Diazo Chemistry 1 and 2, VCH Publishers, New York, 1994 Search PubMed.
  4. (a) J. D. Morrison and H. S. Mosher, Asymmetric Organic Reactions, Prentice-Hall, Englewood CliVs, NJ, 1971 Search PubMed; (b) R. E. Gawley and J. Aube, Principles of Asymmetric Synthesis, Pergamon Press, Oxford, UK, 1996 Search PubMed.
  5. (a) M. Legrand and M. J. Rougier, in Stereochemistry. Fundamentals and Methods. Vol. 2: Determination of Configurations by Dipole Moments, CD or ORD, ed. H. B. Kagan, George Thieme, Stuttgart, 1977 Search PubMed; (b) D. N. Kirk, Tetrahedron, 1986, 42, 777 CrossRef CAS; (c) D. A. Lightner, in Circular Dichroism. Principles and Applications, eds. K. Nakanishi, N. Berova and R. Woody, VCH Publishers, Inc., New York, 1994 Search PubMed.
  6. (a) D. E. Bays, G. W. Cannon and R. C. Cookson, J. Chem. Soc. (B), 1966, 885 RSC; (b) C. Coulombeau and A. Rassat, Bull. Soc. Chim. Fr., 1966, 3752 CAS; (c) C. Coulombeau and A. Rassat, Bull. Soc. Chim. Fr., 1971, 516 CAS.
  7. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, U. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN94 (Revision E.2). Gaussian, Inc., Pittsburgh, PA, 1995.
  8. S. Manabe and C. Nishino, J. Chem. Ecol., 1983, 9, 433 Search PubMed.
  9. D. N. Harpp, L. Q. Bao, C. J. Back, J. G. Gleason and R. A. Smith, J. Org. Chem., 1975, 40, 3420 CrossRef CAS.
  10. A. D. Allen and T. T. Tidwell, J. Am. Chem. Soc., 1987, 109, 2774 CrossRef CAS.
  11. W. Kirmse and W. Spaleck, Angew. Chem., 1981, 93, 791 CAS.
  12. A. I. Meyers, D. R. Williams, G. W. Erickson, S. White and M. Druelinger, J. Am. Chem. Soc., 1981, 103, 3081 CrossRef CAS.
  13. E. J. Corey and M. A. Tius, Tetrahedron Lett., 1989, 21, 3535 CrossRef CAS.
  14. A. P. Masters and T. S. Sorensen, Tetrahedron Lett., 1989, 30, 5869 CrossRef CAS.
  15. D. H. R. Barton, F. S. Guziec, Jr. and I. Shahak, J. Chem. Soc., Perkin Trans., 1974, 1, 1794 Search PubMed.
  16. S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 713 RSC.
  17. K. Nakagawa, R. Konaka and T. Nakata, J. Org. Chem., 1962, 27, 1597 CAS.
  18. A. Krebs, W. Rüger, B. Ziegenhagen, M. Hebold, I. Hardtke, R. Müller, M. Schütz, M. Wietzke and M. Wilke, Chem. Ber., 1984, 117, 277 CAS.
  19. J. P. Flament and H. P. Gervais, Theor. Chim. Acta, 1982, 61, 149 CAS.
  20. M. F. Ruiz-Lopez and D. Rinaldi, Chem. Phys., 1984, 86, 367 CrossRef CAS.
  21. M. F. Ruiz-Lopez, D. Rinaldi and J. L. Rivail, Chem. Phys, 1986, 110, 403 CrossRef CAS.
  22. H. Tokiwa and M. Kamiya, J. Mol. Struct. (THEOCHEM), 1988, 181, 25 CrossRef.
  23. D. N. Kirk, J. Chem. Soc., Perkin Trans. 1, 1977, 2122 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.