Theoretical density functional and ab initio computational study of vertical ionization potentials, dipole moments and 13C and 14N-NMR shifts of the 2-mercaptopyridine system. A model for thiated nucleobases[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Victor Martinez-Merino and Maria J. Gil


Abstract

Lower valence vertical ionization potentials (VIPs) of pyridine-2(1H)-thione (1), 1-methylpyridine-2(1H)-thione (3) and their tautomers (2 and 4) from B3LYP/6-311+G(2d,p) calculations were in very good agreement with experimental values when the SCF calculated first VIP was added to the relative energy of the corresponding Kohn–Sham orbitals. Except for the first VIP, the valence VIPs were poorly reproduced by HF or MP2 calculations following Koopmans’ theorem. Both MP2 and B3LYP electronic correlation methods using 6-311+G(2d,p) basis sets gave good predictions for the dipole moments of 3 and 4 in benzene solution. Dipole moments from calculations including solvent effects by SCRF methods were very large. Relative 14N and 13C-NMR shifts of 3 and 4 tautomers from the GIAO method applied at the B3LYP/6-311+G(2d,p) level were in good agreement with experimental values using a scaling factor of 0.96.


References

  1. M. J. Nowak, L. Lapinski, J. S. Kwiatkowski and J. Leszczynsky, Computational Chemistry: Reviews of Current Trends, ed. J. Leszczynsky, World Scientific Publishing, Singapore, 1997, vol. 2, ch. 4. And references cited therein Search PubMed.
  2. J. S. Kwiatkowski and J. Leszczynsky, Int. J. Quantum Chem., 1997, 61, 453 CrossRef CAS.
  3. A. Broo and A. Holmen, J. Phys. Chem., 1997, 101, 3589 Search PubMed.
  4. J. Lorentzon, M. P. Fülscher and B. O. Roos, J. Am. Chem. Soc., 1995, 117, 9265 CrossRef CAS.
  5. M. J. Stewart, J. Leszczynsky, Y. V. Rubin and Y. P. Blagoi, J. Phys. Chem., 1997, 101, 4753 Search PubMed.
  6. M. J. Cook, S. El-Abbady, A. R. Katritzky, C. Guimon and G. Pfistar-Guillonzo, J. Chem. Soc., Perkin Trans. 2, 1977, 1652 RSC.
  7. H. Lumbroso and D. M. Bertin, Bull. Soc. Chim. Fr., 1970, 1728 CAS.
  8. L. Stefaniak, Org. Magn. Reson., 1979, 12, 379 Search PubMed.
  9. (a) M. W. Wong, M. J. Frisch and K. B. Wiberg, J. Am. Chem. Soc., 1991, 113, 4776 CrossRef CAS; (b) M. W. Wong, K. B. Wiberg and M. J. Frisch, J. Am. Chem. Soc., 1992, 114, 523 CrossRef CAS; (c) M. W. Wong, K. B. Wiberg and M. J. Frisch, J. Am. Chem. Soc., 1992, 114, 1645 CrossRef.
  10. J. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn. Gaussian Inc., Pittsburgh, PA, 1996 Search PubMed.
  11. P. Beak, J. Bonham and J. T. Lee, Jr., J. Am. Chem. Soc., 1968, 90, 1569 CrossRef CAS.
  12. M. J. Nowak, L. Lapinski, H. Rostkowska, A. Les and L. Adamowcz, J. Phys. Chem., 1990, 94, 7406 CrossRef CAS And references cited therein.
  13. P. Beak, J. B. Covington and J. M. White, J. Org. Chem., 1980, 45, 1347 CrossRef CAS.
  14. J. W. Gauld, M. N. Glukhovtsev and L. Radom, Chem. Phys. Lett., 1996, 262, 187 CrossRef CAS.
  15. M. Sodupe, A. Oliva and J. Bertran, J. Phys. Chem., 1997, 101, 9142 Search PubMed.
  16. E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, NBO program(version 3.1), included in GAUSSIAN94 (ref. 32) Search PubMed.
  17. T. A. Koopmans, Physica, 1933, 1, 104 Search PubMed.
  18. S. B. Trickey, Conceptual Trends in Quantum Chemistry, ed. E. S. Kryachko and J. L. Calais, Kluwer Academic Publishers, Dordrecht, 1994 Search PubMed.
  19. E. J. Baerends and O. V. Gritsenko, J. Phys. Chem., 1997, 101, 5383 Search PubMed.
  20. J. I. Garcia, V. Martinez-Merino and J. A. Mayoral, J. Org. Chem., 1998, 63, 2321 CrossRef CAS.
  21. (a) C. Guimon, G. Pfister-Guillouzo, M. Arbelot and M. Chanon, Tetrahedron, 1974, 30, 3831 CrossRef CAS; (b) C. Guimon, G. Pfister-Guillouzo and M. Arbelot, Tetrahedron, 1975, 31, 2769 CrossRef CAS; (c) C. Guimon, G. Pfister-Guillouzo and M. Arbelot, J. Mol. Structure, 1976, 30, 339 Search PubMed.
  22. L. D. Hatherley, R. D. Brown, P. D. Godfrey, A. P. Pierlot, W. Caminati, D. Damiani, S. Merlandri and L. B. Favero, J. Phys. Chem., 1993, 97, 46 CrossRef.
  23. E. L. Eliel, N. L. Allinger, S. J. Angyal and G. A. Morrison, Conformational Analysis, Wiley, New York, 1967 Search PubMed.
  24. H. Fukui, Magn. Reson. Rev., 1987, 11, 205 Search PubMed.
  25. R. Ditchfield, Mol. Phys., 1974, 27, 789 CAS.
  26. (a) M. Schindler and W. Kutzelnigg, J. Chem. Phys., 1982, 76, 1919 CrossRef CAS; (b) M. Schindler and W. Kutzelnigg, J. Am. Chem. Soc., 1983, 105, 1360 CrossRef CAS.
  27. (a) A. E. Hansen and T. D. Bouman, J. Chem. Phys., 1985, 82, 5035 CrossRef CAS; (b) A. E. Hansen and T. D. Bouman, J. Chem. Phys., 1989, 91, 3552 CrossRef CAS.
  28. K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251 CrossRef CAS.
  29. J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, J. Chem. Phys., 1996, 104, 5497 CrossRef CAS.
  30. Scaling factors of each compound were deduced by means of linear regression between experimental and calculated relative 13C-NMR s hifts forcing the intercept through the origin.
  31. Note that scaling factor for GIAO HF/6-311+G(2d,p) in 3 from regression (ref. 30) was 0.938, but it was for the very high shift of C2. When this atom was excluded from analysis, a scaling factor of 0.983 was obtained.
  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Latham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andrés, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. González and J. A. Pople, GAUSSIAN94, Revision C.3, Gaussian Inc., Pittsburgh, PA, 1995.
  33. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  34. (a) C. Moller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS; (b) M. Head-Gordon, J. A. Pople and M. J. Frisch, Chem. Phys. Lett., 1988, 153, 503 CrossRef CAS; (c) M. J. Frisch, M. Head-Gordon and J. A. Pople, Chem. Phys. Lett., 1990, 166, 275 CrossRef CAS; (d) M. J. Frisch, M. Head-Gordon and J. A. Pople, Chem. Phys. Lett., 1990, 166, 281 CrossRef CAS.
  35. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  36. (a) M. J. Frisch, J. S. Binkley and J. A. Pople, J. Chem. Phys., 1984, 80, 3265 CrossRef CAS; (b) A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639 CrossRef CAS; (c) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650 CrossRef CAS.
  37. J. Urban, P. R. Schreiner, G. Vacek, P. v. R. Schleyer, J. Q. Huang and J. Leszczynsky, Chem. Phys. Lett., 1997, 264, 441 CrossRef CAS.
  38. E. P. F. Lee and T. G. Wright, J. Phys. Chem., 1997, 101, 1374 Search PubMed.
  39. J. Gauss, J. Chem. Phys., 1993, 99, 3629 CrossRef CAS.
  40. (a) S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117 CrossRef CAS; (b) J. Tomasi, R. Bonaccorsi, R. Cammi and F. O. Valle, J. Mol. Struct., 1991, 234, 401 CrossRef; (c) J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.