[n]Peristylanes and [n]oxa[n]peristylanes (n = 3–6): A theoretical study

(Note: The full text of this document is currently only available in the PDF Version )

Pankaz K. Sharma, Eluvathingal D. Jemmis, Ramdas Vidya and Goverdhan Mehta


Abstract

Theoretical studies at the HF and Becke3LYP levels using 6-31G* basis sets were carried out on a series of [n]peristylanes and [n]oxa[n]peristylanes (n = 3–6) to understand their structure and energetics. The structures of the [3]- and [4]peristylanes (1, 2) and their oxa-derivatives (5, 6) were calculated to have the anticipated high symmetry, Cnv. In contrast, a Cs structure (9) at HF/6-31G* and another (25) at the Becke3LYP/6-31G* level were calculated for the [5]oxa[5]peristylane. The energy difference between them is extremely small even though there are major differences in the structures indicating a very soft potential energy surface. On the other hand, the potential energy surface of [6]oxa[6]peristylane is not as soft. Similar structures were also calculated for the top rings. Calculations on the seco-compounds 11–14 and 15–19 (Table 4) indicate that there is no unusual strain involved in the formation of 27 from 19. The Li+ interaction energies of the [n]oxa[n]peristylanes are 61.7 (n = 3), 72.8 (n = 4), 84.2 (n = 5) and 91.7 (n = 6) kcal mol–1 at the Becke3LYP/6-31G* level. Dramatic differences between the C–C bond lengths obtained from the solid state X-ray diffraction studies and those from the calculations for the [n]oxa[n]peristylanes were also observed.


References

  1. (a) R. Frohlich, Acta Crystallogr., Sect. C, (Cr. Str. Comm.), 1984, 40, 1289 Search PubMed; (b) C.-H. Lee, S. Liang, T. Haumann, R. Boese and A. de Meijere, Angew Chem., Int. Ed. Engl., 1993, 32, 559 CrossRef.
  2. (a) L. A. Paquette, J. W. Fischer and P. Engel, J. Org. Chem., 1985, 50, 2524 CrossRef CAS; (b) P. Engel, J. W. Fischer and L. A. Paquette, Z. Kristallogr., 1984, 166, 225 CAS; (c) P. Engel, J. C. Weber and L. A. Paquette, Z. Kristallogr., 1986, 177, 229 CAS.
  3. (a) P. E. Eaton, W. H. Bunnelle and P. Engel, Can. J. Chem., 1984, 62, 2612 CAS; (b) L. A. Paquette, D. W. Balogh and J. F. Blount, J. Am. Chem. Soc., 1981, 103, 228 CrossRef CAS; (c) F. E. Scarbrough and W. Nowacki, Z. Kristallogr., 1974, 139, 395 CAS.
  4. (a) G. Sedelmeier, W.-D. Fessner, R. Pinkos, C. Grund, B. A. R. C. Murty, D. Hunkler, G. Rihs, H. Fritz, C. Kruger and H. Prinzbach, Chem. Ber., 1986, 119, 3442 CAS; (b) A. Fronda and G. Maas, Angew. Chem., Int. Ed. Engl., 1989, 28, 1663 CrossRef; (c) E. Blesinger and G. Schroder, Chem. Ber., 1978, 111, 2448 CAS.
  5. (a) G. Mehta and R. Vidya, Tetrahedron Lett., 1997, 38, 4173 CrossRef CAS; (b) for a derivative of 7, see: H. J. Wu and C. Y. Wu, Tetrahedron Lett., 1997, 38, 2493 Search PubMed; (c) Y. Chatani and K. Kitahama, Bull. Chem. Soc. Jpn., 1973, 46, 2300.
  6. G. Mehta and R. Vidya, Tetrahedron Lett., 1997, 38, 4177 CrossRef CAS.
  7. G. Mehta and R. Vidya, unpublished, resultsFor related recent efforts, see: H. Izumi, O. Setokuchi, Y. Shimizu, H. Tobita and H. Ogino, J. Org. Chem., 1997, 62, 1173 Search PubMed.
  8. G. Mehta and R. Vidya, Tetrahedron Lett., 1998, 39, 6403 CrossRef CAS.
  9. J. D. Dunitz, V. Schomaker and K. N. Trueblood, J. Phys. Chem., 1988, 92, 856 CrossRef CAS.
  10. (a) W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed; (b) J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn., Gaussian Inc., Pittsburg, 1996 Search PubMed.
  11. (a) R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford, New York, 1989 Search PubMed; (b) L. J. Bartolotti and K. Fluchick, in Reviews in Computational Chemistry, vol. 7, eds. K. B. Lipkowitz and K. D. B. Boyd, VCH Publishers, New York, 1996, pp. 187–216 Search PubMed.
  12. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS; (b) A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS; (c) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1980, 37, 785 CrossRef; (d) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Gaussian, Inc., Pittsburgh, PA, 1995.
  14. J. W. McIver and A. K. Komornicki, J. Am. Chem. Soc., 1972, 94, 2625 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.