Complexation of the basic amino acids lysine and arginine by three sulfonatocalix[n]arenes (n = 4, 6 and 8) in water: microcalorimetric determination of the Gibbs energies, enthalpies and entropies of complexation

(Note: The full text of this document is currently only available in the PDF Version )

Nathalie Douteau-Guével, Anthony W. Coleman, Jean-Pierre Morel and Nicole Morel-Desrosiers


Abstract

The complexes formed between three p-sulfonatocalix[n]arenes (n = 4, 6 and 8) and the amino acids lysine and arginine in water have been studied by microcalorimetry, at 298.15 K. For each system, both the apparent association constant and enthalpy of reaction have been extracted from the calorimetric data. The Gibbs energies, enthalpies and entropies of complexation have been determined both in acidic medium (pH 1) and in slightly basic medium (pH 8). The thermodynamic parameters for the complexation of arginine markedly differ from those for the complexation of lysine. The three hosts show very different thermodynamic behaviours. Our results are consistent with the formation of 1∶1 complexes with the calix[4]arenesulfonate and the calix[6]arenesulfonate and with the formation of 1∶1 and 1∶2 complexes with the calix[8]arenesulfonate. Whereas the calix[4]arenesulfonate forms relatively strong complexes, the calix[6]arenesulfonate and the calix[8]arenesulfonate form only weak complexes. In all cases, the complexation is driven by a favourable enthalpy change. The enthalpies and entropies of complexing of arginine by the calix[6]arenesulfonate are remarkably negative. The enthalpies and entropies of complexation of the two amino acids by the cyclic tetramer and by the cyclic hexamer become more negative when the pH is changed from 8 to 1; the same effect is observed upon binding of the cyclic octamer with the first guest whereas the opposite effect is observed upon addition of the second guest.


References

  1. V. Böhmer, Angew. Chem., Int. Ed. Engl., 1995, 34, 713 CrossRef.
  2. G. W. Gokel, Monograph in Supramolecular Chemistry: Crown Ethers and Cryptands, The Royal Society of Chemistry, London, 1991 Search PubMed.
  3. J. Szejtli, Cyclodextrin Technology, Kluwer Academic, Dordrecht, 1988 Search PubMed.
  4. A. Arduini, A. Pochini, S. Reverberi and R. Ungaro, J. Chem. Soc., Chem. Commun., 1984, 981 RSC.
  5. S. Shinkai, S. Mori, T. Tsubaki, T. Sone and O. Manabe, Tetrahedron Lett., 1984, 25, 5315 CrossRef CAS; S. Shinkai, K. Araki, T. Tsubaki, T. Arimura and O. Manabe, J. Chem. Soc., Perkin Trans. 1, 1987, 2297 RSC.
  6. G. Arena, R. Cali, G. G. Lombardo, E. Rizzarelli, D. Sciotto, R. Ungaro and A. Casnati, Supramol. Chem., 1992, 1, 19 CrossRef CAS.
  7. G. Arena, A. Contino, G. G. Lombardo and D. Sciotto, Thermochim. Acta, 1995, 264, 1 CrossRef CAS.
  8. M. Nishida, D. Ishii, I. Yoshida and S. Shinkai, Bull. Chem. Soc. Jpn., 1997, 70, 2131 CAS.
  9. J. P. Scharff and M. Mahjoubi, New J. Chem., 1991, 15, 883 CAS.
  10. C. D. Gutsche, Monographs in Supramolecular Chemistry, Calixarenes, The Royal Society of Chemistry, London, 1989 Search PubMed.
  11. H. J. Schneider, D. Güttes and U. Schneider, Angew. Chem., Int. Ed. Engl., 1986, 25, 647 CrossRef.
  12. S. Shinkai, K. Araki and O. Manabe, J. Chem. Soc., Chem. Commun., 1988, 187 RSC.
  13. S. Shinkai, K. Araki, T. Matsuda and O. Manabe, Bull. Chem. Soc. Jpn., 1989, 62, 3856 CAS.
  14. S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu and H. Iwamoto, J. Am. Chem. Soc., 1990, 112, 9053 CrossRef.
  15. T. Morozumi and S. Shinkai, J. Chem. Soc., Chem. Commun., 1994, 1219 RSC.
  16. M. Nishida, D. Ishii, I. Yoshida and S. Shinkai, Bull. Chem. Soc. Jpn., 1997, 70, 2131 CAS.
  17. Y. Zhang, R. A. Agbaria and I. M. Warner, Supramol. Chem., 1997, 8, 309 CAS.
  18. R. Castro, L. A. Godinez, C. M. Criss and A. E. Kaifer, J. Org. Chem., 1997, 62, 4928 CrossRef CAS.
  19. I. S. Antipin, I. I. Stoikov, E. M. Pinkhassik, N. A. Fitseva, I. Stibor and A. I. Konovalov, Tetrahedron Lett., 1997, 38, 5865 CrossRef CAS.
  20. Y. Hamuro, H. C. Calama, H. S. Park and A. D. Hamilton, Angew. Chem., Int. Ed. Engl., 1997, 36, 2680 CrossRef CAS.
  21. D. J. S. Hulmes, E. Aubert-Foucher and A. W. Coleman, French Patent FR 98.10074, 1998.
  22. N. Douteau-Guével, A. W. Coleman, J. P. Morel and N. Morel-Desrosiers, J. Phys. Org. Chem., 1988, 11, 693 CrossRef.
  23. J. Suurkuusk and I. Wadsö, Chem. Scr., 1982, 20, 155 Search PubMed.
  24. Y. Inoue and T. Hakushi, J. Chem. Soc., Perkin Trans. 2, 1985, 935 RSC.
  25. Y. Liu, L. H. Tong, S. Huang, B. Z. Tian, Y. Inoue and T. Hakushi, J. Phys. Chem., 1990, 94, 2666 CrossRef CAS.
  26. D. Smithrud, T. B. Wyman and F. Diederich, J. Am. Chem. Soc., 1991, 113, 5420 CrossRef CAS.
  27. Y. Inoue, T. Hakushi, Y. Liu, L. H. Tong, B. J. Shen and D. S. Jin, J. Am. Chem. Soc., 1993, 115, 475 CrossRef CAS.
  28. Y. Inoue, Y. Liu, L. H. Tong, B. J. Shen and D. S. Jin, J. Am. Chem. Soc., 1993, 115, 10637 CrossRef CAS.
  29. R. Tyler-Cross, M. Sobel, D. Marques and R. B. Harris, Protein Sci., 1994, 3, 620 CAS.
  30. M. Cadène, N. Morel-Desrosiers, J. P. Morel and J. G. Bieth, J. Am. Chem. Soc., 1995, 117, 7882 CrossRef CAS.
  31. W. Tao and M. Barra, J. Chem. Soc., Perkin Trans. 2, 1998, 1957 RSC.
  32. A. W. Coleman, C. de Rango, F. Villain and N. Douteau-Guével, unpublished results.
  33. M. Stödeman and N. Dhar, J. Chem. Soc., Faraday Trans., 1998, 94, 899 RSC.
  34. J. L. Atwood, D. L. Clark, R. K. Juneja, G. W. Orr, K. D. Robinson and R. L. Vincent, J. Am. Chem. Soc., 1992, 114, 7558 CrossRef CAS.