Domino reaction between 2-acylfurans and diethyl azodicarboxylate: a combined experimental, theoretical, X-ray and dynamic NMR study

(Note: The full text of this document is currently only available in the PDF Version )

M. Eugenia González-Rosende, José Sepúlveda-Arques, Elena Zaballos-Garcia, Luis R. Domingo, Ramón J. Zaragozá, W. Brian Jennings, Simon E. Lawrence and Donal O’Leary


Abstract

Treatment of 2-acetylfuran 6a with diethyl azodicarboxylate gave the cycloadduct 7, 6,7-diethoxycarbonyl-6,7-diaza-8-oxabicyclo[3.2.1]oct-3-en-2-one, whereas 5-methyl-2-formylfuran 6b reacted giving a simple hydrazide product derived from radical reaction on the formyl group. The structure of the bicyclic compound 7, established by NMR measurements, was confirmed by an X-ray crystallographic analysis. Variable temperature 1H NMR and 13C NMR studies of 7 indicate that this compound undergoes two distinct dynamic conformational changes with ΔG[hair space] 10.2 and 13.1 kcal mol–1 respectively. The reaction mechanism associated with the domino reaction between furfural 1 and dimethyl azodicarboxylate 9 to give the cycloadduct 10 has been theoretically characterized using ab initio methods at the RHF/6-31G* level. The reaction pathway can be described as a three-step process. The first step corresponds with a [4 + 2] cycloaddition between 1 and 9, while the two subsequent steps are associated with a structural isomerization of the initial formyl cycloadduct to a more stable final adduct.


References

  1. E. Zaballos-Garcia, M. E. Gonzalez-Rosende, J. M. Jorda-Gregori, J. Sepúlveda-Arques, W. B. Jennings, D. O'Leary and S. Twomey, Tetrahedron, 1997, 53, 9313 CrossRef CAS.
  2. M. E. Gonzalez-Rosende, O. Lozano-Lucia, E. Zaballos-Garcia and J. Sepúlveda-Arques, J. Chem. Res. (S), 1995, 260 Search PubMed.
  3. A. R. Katritsky, C. W. Rees and E. F. V. Scriven, eds., Comprehensive Heterocyclic Chemistry, Pergamon Press, vol. II, 1996 Search PubMed.
  4. A. Padwa, M. Dimitroff, A. G. Waterson and T. Wu, J. Org. Chem., 1997, 62, 4088 CrossRef CAS; K. T. Potts and E. B. Walsh, J. Org. Chem., 1988, 53, 1199 CrossRef CAS; J. A. Moore and E. M. Partain III, J. Org. Chem., 1983, 48, 1105 CrossRef CAS; W. B. Dauben and H. O. Krabbenhoft, J. Am. Chem. Soc., 1976, 98, 1992 CrossRef CAS; W. L. Nelson and D. R. Allen, J. Heterocycl. Chem., 1972, 9, 561 CAS.
  5. G. Desimoni and G. Tacconi, Chem. Rev., 1975, 75, 651 CrossRef CAS.
  6. K. H. Linke and H. G. Kalker, Z. Anorg. Allg. Chem., 1977, 434, 165 CAS; G. Reck, M. Just and R. Koch, Cryst. Res. Technol., 1987, 22, 395 CAS; N. G. Anderson, D. A. Lust, K. A. Colapret, J. H. Simpson, M. F. Malley and J. Z. Gougoutas, J. Org. Chem., 1996, 61, 7955 CrossRef CAS; M. Kaftory, T. H. Fisher and S. M. Dershem, J. Chem. Soc., Perkin Trans. 2, 1989, 1887 RSC; J. Barluenga, F. J. Gonzalez, S. Fustero, M. de la C. Foces-Foces, F.-H. Cano and A. S. Feliciano, J. Chem. Res., 1989, (s) 66; (m) 569 Search PubMed.
  7. W. J. Hehre, L. Random, P. V. R. Schleyer and J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  8. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS; A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  9. L. R. Domingo, M. Arnó and J. Andrés, J. Am. Chem. Soc., 1998, 120, 1617 CrossRef CAS; L. R. Domingo, M. T. Picher, M. Arnó, J. Andrés and V. S. Safont, J. Mol. Struct. (Theochem), 1998, 426, 257 CrossRef CAS.
  10. O. Diels and K. Alder, Justus Liebigs Ann. Chem., 1928, 460, 98 CrossRef CAS; R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1969, 8, 781 CrossRef CAS; A. Wassermann, Trans. Faraday Soc., 1938, 34, 129 Search PubMed.
  11. J. E. Anderson and J. M. Lehn, Tetrahedron, 1968, 24, 123 CrossRef CAS.
  12. For a review of hydrazide stereodynamics see: S. F. Nelsen, in Acyclic Organonitrogen Stereodynamics, J. B. Lambert and Y. Takeuchi, eds., VCH, 1992, p. 89 Search PubMed.
  13. G. M. Sheldrick, SHELX-97, Programs for the solution and refinement of crystal structures, University of Gottingen, Germany, 1997.
  14. A. L. Spek, PLATON, Molecular Graphics Program, University of Utrecht, Holland, 1998.
  15. GAUSSIAN94, Revision B.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
  16. H. B. Schlegel, J. Comput. Chem., 1982, 3, 214 CrossRef CAS; H. B. Schlegel, “Geometry Optimization on Potential Energy Surface”, in Modern Electronic Structure Theory, ed. D. R. Yarkony, World Scientific Publishing, Singapore, 1994 Search PubMed.
  17. J. W. McIver, Jr., Acc. Chem. Res., 1974, 7, 72 CrossRef.
  18. B. Jursic and Z. Zdravkovski, J. Chem. Soc., Perkin Trans. 2, 1995, 1223 RSC; B. Jursic, J. Mol. Struct. (Theochem), 1996, 365, 55 CrossRef CAS; E. Goldstein, B. Beno and K. N. Houk, J. Am. Chem. Soc., 1996, 118, 6036 CrossRef CAS.
  19. L. R. Domingo, J. F. Sanz-Cervera, R. M. Williams, M. T. Picher and J. A. Marco, J. Org. Chem., 1997, 62, 1662 CrossRef CAS; L. R. Domingo, M. T. Picher and R. J. Zaragozá, J. Org. Chem., in the press Search PubMed.
  20. W. B. Jennings, J. Chem. Soc., Chem. Commun., 1971, 867 RSC; J. Burdon, J. C. Hotchkiss and W. B. Jennings, J. Chem. Soc., Perkin Trans. 2, 1976, 1052 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.