Hydrogen bonding in complexes of carboxylic acids with 1-alkylimidazoles: steric and isotopic effects on low barrier hydrogen bonding

(Note: The full text of this document is currently only available in the PDF Version )

Constance S. Cassidy, Laurie A. Reinhardt, W. Wallace Cleland and Perry A. Frey


Abstract

The nature of hydrogen bonding within intermolecular complexes of carboxylic acids and 1-methylimidazole (1-MeIm), 1-n-butylimidazole (1-BuIm), and 1-tert-butylimidazole (1-t-BuIm) in chloroform was characterized by Fourier transform infrared spectroscopy. Earlier spectroscopic studies indicated that carboxylic acid–1-MeIm complexes are of three types: (I) neutral complexes with the weaker acids (pKa [greater than or equal, slant] 2.2) in which the antisymmetric carbonyl stretching frequencies are lowered relative to the free acids and the ethyl esters of the acids; (II) ionic complexes of stronger acids (pKa ⩽ 2.0) in which the carbonyl stretching frequencies are slightly lower than those for the tetrabutylammonium salts of the acids; (III) depolarized partially ionic complexes coexisting with type II, in which the carbonyl stretching frequencies are intermediate between those for the tetrabutylammonium salts (bond order 1.5) and the free acids (bond order 2.0).12 Assignment of the ionic and intermediate carbonyl stretching frequencies was verified by shifts to longer wavelengths in the 18O-labeled 2,2-dichloropropanoic acid–1-MeIm complexes. Type III complexes have been postulated to incorporate a low barrier hydrogen bond (LBHB) between the N3 of the imidazole ring and the carboxylic group. The size of the alkyl group in 1-alkylimidazoles has no significant effect on the carbonyl stretching frequencies in any of the complexes. However, increasing bulkiness in the alkyl group increases the intensity of the type III species relative to type II, so that the equilibrium is shifted toward low barrier hydrogen bonding in solution. The broad bands at approximately 2500 and 1900 cm–1 in the R-COOH–1-alkylimidazole complexes are similar to those classically attributed to strong hydrogen bonds. These bands are absent from the spectra of R-COOD–1-alkylimidazole complexes. Moreover, the antisymmetric carbonyl stretching bands characteristic of the type III, or LBHB-bonded complexes, are greatly decreased in intensity in the spectra of R-COOD–1-alkylimidazole complexes, and are shifted to higher wavelengths nearer to those expected for the free R-COOD. The deuteron is more strongly attached to oxygen, whereas the corresponding proton is more free to engage in low-barrier hydrogen bonding. Spectroscopic data indicate that R-COOH–1-alkylimidazole complexes are unexpectedly strong in CHCl3, perhaps because of resonance assisted hydrogen bonding.


References

  1. P. A. Frey, S. A. Whitt and J. B. Tobin, Science, 1994, 264, 1927 CrossRef CAS.
  2. C. S. Cassidy, J. Lin and P. A. Frey, Biochemistry, 1997, 36, 4576 CrossRef CAS.
  3. J. Lin, C. S. Cassidy and P. A. Frey, Biochemistry, 1998, 37 Search PubMed in the press.
  4. G. Robillard and R. G. Shulman, J. Mol. Biol., 1972, 71, 507 CAS.
  5. J. L. Markley, Biochemistry, 1978, 17, 4648 CrossRef CAS.
  6. J. L. Markley and W. M. Westler, Biochemistry, 1996, 35, 11092 CrossRef CAS.
  7. T. C. Liang and R. H. Abeles, Biochemistry, 1987, 26, 7603 CrossRef CAS.
  8. W. W. Cleland, Biochemistry, 1992, 31, 317 CrossRef CAS.
  9. J. A. Gerlt and P. G. Gassman, Biochemistry, 1993, 32, 11943 CrossRef CAS.
  10. W. W. Cleland and M. M. Kreevoy, Science, 1994, 264, 1887 CrossRef CAS.
  11. J. A. Gerlt, M. M. Kreevoy, W. W. Cleland and P. A. Frey, Chem. Biol., 1997, 4, 259 CrossRef CAS.
  12. J. B. Tobin, S. A. Whitt, C. S. Cassidy and P. A. Frey, Biochemistry, 1995, 34, 6919 CrossRef CAS.
  13. K. I. Lazaar and S. H. Bauer, J. Am. Chem. Soc., 1985, 107, 3769 CrossRef CAS.
  14. W. A. Bueno, N. A. Blaz and M. J. M. Santos, Spectrochim. Acta, Part A, 1981, 37, 935 CrossRef.
  15. M. Szafran and Z. Dega-Szafran, J. Mol. Struct., 1994, 321, 57 CrossRef CAS.
  16. Z. Dega-Szafran, E. Dulewicz and M. Szafran, J. Chem. Soc., Perkin Trans. 2, 1984, 1997 RSC.
  17. G. M. Barrow, J. Am. Chem. Soc., 1956, 78, 5802 CrossRef CAS.
  18. P. Hadzi, Pure Appl. Chem., 1965, 11, 435 CAS.
  19. S. L. Johnson and K. A. Rumon, J. Phys. Chem., 1965, 69, 74 CrossRef CAS.
  20. R. Lindeman and G. Zundel, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 979 RSC.
  21. S. Bratoz, D. Hadzi and N. Sheppard, Spectrochim. Acta, 1956, 8, 249 CrossRef CAS.
  22. D. Hadzi and N. Klibarov, J. Chem. Soc. A, 1966, 439 RSC.
  23. F. E. G. Henn, G. M. Cassanas, J. C. Giuntini and J. V. Zanchetta, Spectrochim. Acta, Part A, 1994, 50, 841 CrossRef.
  24. N. S. Golubev, S. N. Smirnov, V. A. Gindin, G. S. Denisov, H. Benedict and H.-H. Limbach, J. Am. Chem. Soc., 1994, 116, 12055 CrossRef CAS.
  25. G. Zundel and U. Bohner, J. Phys. Chem., 1986, 90, 964 CrossRef.
  26. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997 Search PubMed.
  27. R. P. Bell, The Proton in Chemistry, Cornell University Press, Ithaca, New York, 1959, p. 58 Search PubMed.
  28. Z. Dega-Szafran and J. Kuzendorf, Pol. J. Chem., 1979, 53, 623 CAS.
  29. Z. Dega-Szafran and E. Dulewicz, J. Chem. Soc., Perkin Trans. 2, 1983, 345 RSC.
  30. P. Barczynski, Z. Dega-Szafran and M. Szafran, J. Chem. Soc., Perkin Trans. 2, 1985, 765 RSC.
  31. Z. Dega-Szafran and M. Szafran, Heterocycles, 1994, 37, 627 CrossRef CAS.
  32. L. A. Reinhardt, K. Sackseder and W. W. Cleland, J. Am. Chem. Soc., 1999, in the press Search PubMed.
  33. C. D. Bedford, R. N. Harris, R. A. Howd, D. A. Goff, G. A. Koolpe, M. Petesch, I. Koplovitz, W. E. Sultan and H. A. Musallan, J. Med. Chem., 1989, 32, 504 CrossRef CAS.
  34. Y. Nozaki, F. R. N. Gurd, R. F. Chen and J. T. Edsall, J. Am. Chem. Soc., 1957, 79, 2123 CrossRef CAS.
  35. P. E. Bratchanskii and G. G. Komissarova, Zh. Prikl. Khim., 1974, 47, 242 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.