Conformational analysis, Part 31.1 A theoretical and lanthanide induced shift (LIS) investigation of the conformations of some epoxides

(Note: The full text of this document is currently only available in the PDF Version )

Raymond J. Abraham, Irene Castellazzi, Fernando Sancassan and Timothy A. D. Smith


Abstract

An improved LIS technique, using Yb(fod)3 to obtain the paramagnetic induced shifts of all the spin ½ nuclei in the molecule, together with complexation shifts obtained by the use of Lu(fod)3, has been used to investigate the conformations of a group of epoxides. These are cis (1) and trans (2) stilbene oxide, cyclopentene oxide (3), cyclohexene oxide (4), cycloheptene oxide (5), propene oxide (6) and styrene oxide (7).

The LIRAS3 complexation model involving two symmetric lone pairs on the oxygen atom was used for the symmetric compounds but, for the unsymmetric compounds, a more complex unsymmetric complexation model (HARDER) was found to be necessary. The calculated LIS for styrene oxide and cis- and trans-stilbene oxide were in excellent agreement with the observed data for both the molecular mechanics (MM) and the ab initio geometries with the phenyl ring dihedral angles optimised.

In styrene oxide and trans-stilbene oxide the phenyl rings are approximately perpendicular to the oxirane ring, in agreement with the conformation in the solid state and with the theoretical calculations. In cis-stilbene oxide steric repulsions between the phenyl rings splay them apart so that they are now exo to the oxirane ring. Again the LIS analysis is in good agreement with the theoretical calculations.

Both the LIS data and the modelling studies agree that cyclopentene oxide is in a boat conformation with an angle of pucker of ca. 30° and that cyclohexene oxide is in a half-chair conformation with C4 and C5 displaced from the ring plane.

The LIS analysis of cycloheptene oxide gave good agreement for two equilibrating chair conformations with an endo/exo ratio of 70∶30, in excellent agreement with low temperature NMR data.

The accurate reproduction of the LIS data provides an unambiguous method of assigning the proton chemical shifts of the individual methylene protons in the cyclic epoxides, which are not easily available by any other technique.


References

  1. Part 30 R. J. Abraham, A. Ghersi, G. Petrillo and F. Sancassan, J. Chem. Soc., Perkin Trans. 2, 1997, 1279 Search PubMed.
  2. (a) M. G. Finn and K. B. Sharpless, Asymmetric Synthesis, Academic Press, NY, 1985, vol. 5, ch. 8 Search PubMed; (b) S. J. Gould and B. Shen, J. Am. Chem. Soc., 1991, 113, 684 CrossRef.
  3. (a) C. J. Macdonald and T. Schaefer, Can. J. Chem., 1970, 48, 1033 CAS; (b) C. J. Macdonald and W. F. Reynolds, ibid., 1970, 48, 1046 Search PubMed; (c) W. A. Thomas, J. Chem. Soc. B., 1968, 1187 RSC; (d) R. J. Abraham and B. A. Richards, Tetrahedron, 1983, 39, 4201 CrossRef CAS.
  4. W. J. Lafferty, J. Mol. Spectrosc., 1970, 36, 84 CAS.
  5. R. L. Hildebrandt and J. D. Wieser, J. Mol. Struct., 1974, 22, 247 CrossRef.
  6. (a) M. Traetteberg, T. W. Sandnes and P. Bakken, J. Mol. Struct., 1980, 67, 235 CrossRef CAS; (b) Landholt-Bornstein, Structure Data of Free Polyatomic Molecules, ed. K. H. Hellwege and A. M. Hellwege, Series II, vol. 15, p. 614, Springer-Verlag, Berlin, 1987 Search PubMed.
  7. R. Steyn and H. Z. Stable, Tetrahedron, 1971, 27, 4429 CrossRef CAS.
  8. J. J. McCullough, H. B. Henbest, R. J. Bishop, G. M. Glover and L. E. Sutton, J. Chem. Soc., 1965, 5496 RSC.
  9. B. Ottar, Acta Chem. Scand., 1947, 1, 283 CAS.
  10. V. A. Naumov and V. M. Bezzubov, J. Struct. Chem., 1967, 8, 466 CrossRef.
  11. T. Ikeda, R. Kewley and R. F. Curl, J. Mol. Spectrosc., 1972, 44, 459 CAS.
  12. K. L. Servis, E. A. Noe, N. R. Easton and F. A. L. Anet, J. Am. Chem. Soc., 1974, 96, 4185 CrossRef CAS.
  13. F. Sancassan, G. Petrillo and R. J. Abraham, J. Chem. Soc., Perkin Trans. 2, 1995, 1965 RSC.
  14. R. J. Abraham, S. Angiolini, M. Edgar and F. Sancassan, J. Chem. Soc., Perkin Trans. 2, 1995, 1973 RSC.
  15. R. J. Abraham and I. S. Haworth, Mag. Res. Chem., 1988, 26, 252 Search PubMed.
  16. R. J. Abraham, D. J. Chadwick, P. E. Smith and F. Sancassan, J. Chem. Soc. Perkin Trans. 2, 1989, 1377 RSC.
  17. R. J. Abraham, D. J. Chadwick and F. Sancassan, Tetrahedron, 1982, 38, 1485 and 3245 CrossRef CAS.
  18. R. J. Abraham, D. J. Chadwick and F. Sancassan, Tetrahedron, 1981, 37, 1081 CrossRef CAS.
  19. H. M. McConnell and R. E. Robertson, J. Chem. Phys., 1958, 29, 1361 CrossRef CAS.
  20. C. S. Springer Jr., D. W. Meek and R. E. Sievers, Inorg. Chem., 1967, 6, 1105 CrossRef.
  21. P. L. Robinson, C. N. Barry, J. W. Kelly and S. A. Evans Jr, J. Am. Chem. Soc., 1985, 107, 5210 CrossRef CAS.
  22. J. P. Monti, R. Faure, A. Sauleau and J. Sauleau, Magn. Res. Chem., 1986, 24, 15 CAS.
  23. S. G. Davies and G. H. Whitham, J. Chem. Soc., Perkin Trans. 2, 1975, 862 Search PubMed.
  24. N. R. Easton, F. A. L. Anet, P. A. Burns and C. S. Foote, J. Am. Chem. Soc., 1974, 96, 3945 CrossRef CAS.
  25. D. R. Paulson, F. Y. N. Tang, G. F. Moran, A. S. Murray, B. P. Pelka and E. M. Vasquez, J. Org. Chem., 1975, 40, 184 CrossRef CAS.
  26. R. J. Abraham, J. Fisher and P. Loftus, Introduction to NMR Spectroscopy, J. Wiley, Chichester, 1988, p. 41 Search PubMed.
  27. I. Castellazzi, Tesi di laurea, University of Genoa, 1997.
  28. PCMODEL. Serena Software, PO box 3076, Bloomington.
  29. Gaussian 94, (Revision B2), Gaussian 92, (Revision F4), M. J. Frish, G. W. Trucks, M. Head-Gordon, J. R. Cheeseman, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. P. Stewart, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1992.
  30. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, NY, 1988 Search PubMed.
  31. W. A. Bernett, J. Chem. Educ., 1967, 44, 17 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.