Theoretical studies on cross interactions in the protonation equilibria of diaryl ketones

(Note: The full text of this document is currently only available in the PDF Version )

Ikchoon Lee, Chang Kon Kim, Chan Kyung Kim and Dong Soo Chung


Abstract

Cross interactions in the protonation equilibria of diaryl ketones have been studied MO theoretically at the MP2/6-31G*//RHF/6-31G* level. The susceptibility parameters, S, defined by ΔdX = SX × ΔσX+ and ΔdZ = SZ × ΔσZ+, where d is the length of the bond linking the ring to the carbonyl carbon (Cα), are all positive. However the cross-interaction terms SXZ = 

(Image unavailable, please see full text)

 > 0 and SZX = 

(Image unavailable, please see full text)

 < 0, have different signs indicating that the resonance interaction modes of the two rings in the equilibria are different; the X-ring interacts by π-polarization whereas the Z-ring by through-conjugation in the protonated state (P). These two different modes of resonance interactions are supported by the natural population analysis (NPA). The Hammett cross-interaction constants (CIC), ρXZ, are all negative and the magnitude is of a similar order to that of the susceptibility change, ΔSZ, upon protonation for the 5-membered heteroaromatic ring. The two different modes of resonance interactions within the X- and Z-rings are also reflected in the two different σ scales (σX and σZ+) that give the best fits to the general equation defining the CICs ρXZ using the reaction energy for the protonation reaction, ΔE[hair space]°XZ. The magnitude of the CIC for an equilibrium process is in general large, especially when the reaction center has a strong cationic charge in the product state.


References

  1. (a) I. Lee, Adv. Phys. Org. Chem., 1992, 27, 57 CAS; (b) I. Lee, J. Phys. Org. Chem., 1996, 9, 661 CrossRef CAS; (c) I. Lee, Chem. Soc. Rev., 1995, 24, 223 RSC.
  2. I. Lee, J. Phys. Org. Chem., 1996, 9, 661 CrossRef CAS.
  3. (a) J. Bromilov, T. T. V. Broenlee, D. J. Craik, P. R. Fiske, J. E. Rowe and M. Sadek, J. Chem. Soc., Perkin Trans. 2, 1981, 753 RSC; (b) P. C. Hiberty and G. Ohanessian, J. Am. Chem. Soc., 1984, 106, 6963 CrossRef CAS; (c) C. Dell'Erba, F. Sancassan, M. Novi, G. Petrillo, A. Mugnoli, D. Spinelli, G. Consiglio and P. Gatti, J. Org. Chem., 1988, 53, 3564 CrossRef CAS; (d) C. Dell'Erba, A. Mele, M. Novi, G. Petrillo, F. Sancassan and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1990, 2055 RSC; (e) P. DeMaria, C. L. Barbieri, D. Spinelli, C. Dell'Erba, M. Novi, G. Petrillo and F. Sancassan, J. Chem. Soc., Perkin Trans. 2, 1991, 373 RSC; (f) P. DeMaria, A. Fontana, D. Spinelli, C. Dell'Erba, M. Novi, G. Petrillo and F. Sancassan, J. Chem. Soc., Perkin Trans. 2, 1993, 649 RSC; (g) S. Chimichi, C. Dell'Erba, M. Gruttadauria, R. Noto, M. Novi, G. Petrillo, F. Sancassan and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1995, 1021 RSC; (h) K. B. Lipkowitz, J. Am. Chem. Soc., 1982, 104, 2647 CrossRef CAS; (i) A. J. Ragauskas and J. B. Stothers, J. Am. Chem. Soc., 1982, 104, 6475 CrossRef; (j) D. J. Craik, G. C. Levy and R. T. C. Brownlee, J. Org. Chem., 1983, 48, 1601 CrossRef CAS; (k) R. Noto, M. Gruttadauria, S. Rosselli and D. Spinelli, J. Chem. Soc., Perkin Trans. 2, 1996, 829 RSC.
  4. For example, the C–C bond length for the pyramidalized geometry of the zwitterionic state of twisted ethylene is 1.416 Å and a C–C single bond length is 1.54 Å: B. R. Brooks and H. F. Schaefer III, J. Am. Chem. Soc., 1979, 101, 307 Search PubMed.
  5. I. Lee, C. K. Kim, D. S. Chung and C.-K. Kim, J. Phys. Org. Chem., submitted for publication Search PubMed.
  6. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, Chapter 4 Search PubMed.
  7. A. E. Reed, L. A. Curtiss and F. Weinhod, Chem. Rev., 1988, 88, 899 CrossRef CAS.
  8. GAUSSIAN94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
  9. (a) E. D. Glendening and F. Weinhold, J. Comput. Chem., 1998, 19, 593, 610; (b) E. D. Glendening, J. K. Badenhoop and F. Weinhold, J. Comput. Chem., 1998, 19, 628 CrossRef CAS.
  10. I. Lee, Y. K. Park, C. Huh and H. W. Lee, J. Phys. Org. Chem., 1994, 7, 555 CAS.
  11. ρxz value calculated from, M. Fujio, H. Morimoto, H. J. Kim and Y. Tsuno, Bull. Chem. Soc. Jpn., 1997, 70, 1403, 3081 Search PubMed.
  12. (a) A. D. Allen, M. P. Jansen, K. M. Koshy, N. N. Mangru and T. T. Tidwell, J. Am. Chem. Soc., 1982, 104, 207 CrossRef CAS; (b) A. D. Allen, V. M. Kanagasabapathy and T. T. Tidwell, J. Am. Chem. Soc., 1983, 105, 5961 CrossRef CAS; (c) A. D. Allen, V. M. Kanagasabapathy and T. T. Tidwell, J. Am. Chem. Soc., 1985, 107, 4513 CrossRef CAS; (d) A. D. Allen, V. M. Kanagasabapathy and T. T. Tidwell, J. Am. Chem. Soc., 1986, 108, 3470 CrossRef CAS; (e) J. P. Richard, J. Am. Chem. Soc., 1989, 111, 1455 CrossRef CAS.
  13. (a) S. Ehrenson, R. T. C. Brownlee and R. W. Taft, Prog. Phys. Org. Chem., 1973, 10, 1 Search PubMed; (b) F. Ruff and I. G. Csizmadia, Organic Reactions, Equilibria, Kinetics and Mechanism, Elseviser, Amsterdam, 1994, Chapter 7 Search PubMed; (c) C. G. Swain, S. H. Ungar, N. R. Rosenquist and M. S. Swain, J. Am. Chem. Soc., 1983, 105, 492 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.