Stereoselective Michael addition of benzylamines to homochiral methylenebutanedioates

(Note: The full text of this document is currently only available in the PDF Version )

Alexander N. Chernaga, Stephen G. Davies, Christopher N. Lewis and Richard S. Todd


Abstract

The Michael addition of benzylamine to the homochiral methylenebutanedioate 10 gave an adduct 11 in good yield with high stereoselectivity. By performing the reaction in methanol the (2R,3R) diastereoisomer 11 was obtained in 88% de, which was increased to 98% de after recrystallisation of the primary amine derivative 13. The ratio of diastereoisomers was reversed by performing the reaction in aprotic solvents, with the (2R,3S[hair space]) diastereoisomer 12 being obtained in 40% de in tetrahydrofuran. The Michael adduct 11 is formed under kinetic control. The primary amine 15 is a key intermediate in the synthesis of novel matrix metalloproteinase inhibitors.


References

  1. R. P. Beckett, Exp. Opin. Ther. Patents, 1996, 6, 1305 Search PubMed.
  2. E. Baramova and J.-M. Foidart, Cell Biol. Int., 1995, 19, 239 CAS.
  3. C. Campion, A. H. Davidson, J. P. Dickens and M. J. Crimmin, WO 90/05719, 1990; Chem. Abstr., 1990, 113, 212677 Search PubMed.
  4. J. P. Dickens, M. J. Crimmin and R. P. Beckett, WO 94/02447, 1994; Chem. Abstr., 1994, 121, 180211 Search PubMed.
  5. (a) S. G. Davies and O. Ichihara, Tetrahedron: Asymmetry, 1991, 2, 183 CrossRef CAS; (b) S. G. Davies and I. A. S. Walters, J. Chem. Soc., Perkin Trans. 1, 1994, 1129 RSC; (c) S. G. Davies, O. Ichihara and I. A. S. Walters, J. Chem. Soc., Perkin Trans. 1, 1994, 1141 RSC.
  6. R. Hirayama, M. Yamamoto, T. Tsukida, K. Matsuo, Y. Obato, F. Sakamoto and S. Ikeda, Bioorg. Med. Chem., 1997, 5, 765 CrossRef CAS.
  7. (a) For a review, see D. C. Cole, Tetrahedron, 1994, 50, 9517 Search PubMed; (b) S. Torii, T. Inokuchi and M. Kubota, J. Org. Chem., 1985, 50, 4157 CrossRef CAS; (c) D. H. R. Barton, A. Fekih and X. Lusinchi, Bull. Soc. Chim. Fr., 1988, 4, 681; (d) S. E. Drewes, O. L. Njamela, N. D. Emslie, N. Ramesar and J. S. Field, Synth. Commun., 1993, 23, 2807 CrossRef CAS; (e) G. Jenner, Tetrahedron Lett., 1995, 36, 233 CrossRef CAS; (f) S. Kwiatkowski, A. Jeganathan, T. Tobin and D. S. Watt, Synthesis, 1989, 946 Search PubMed (and references therein).
  8. (a) E. Juaristi, J. Escalante, B. Lamatsch and D. Seebach, J. Org. Chem., 1992, 57, 2396 CrossRef CAS; (b) J. M. Hawkins and G. C. Fu, J. Org. Chem., 1986, 51, 2820 CrossRef CAS.
  9. (a) E. S. Stratford and R. W. Curly, J. Med. Chem., 1983, 26, 1463 CrossRef CAS; (b) A. Zilka, E. S. Rachman and J. Rivlin, J. Org. Chem., 1961, 26, 376 CrossRef.
  10. P. Perlmutter and M. Tabone, Tetrahedron Lett., 1988, 29, 949 CrossRef CAS.
  11. (a) S. Patai and Z. Rappoport, in The Chemistry of Alkenes, ed. S. Patai, Interscience, New York, 1964, ch. 8 Search PubMed; (b) H. E. Zimmerman, J. Org. Chem., 1955, 20, 549 CrossRef CAS; (c) S. I. Suminov and A. N. Kost, Russ. Chem. Rev., 1969, 38, 884 Search PubMed.
  12. For a discussion of kinetic vs. thermodynamic control, see Klumpp, in Reactivity in Organic Synthesis, Wiley, New York, 1982, pp. 36 Search PubMed.
  13. S. Masamune, W. Choy, J. S. Peterson and L. R. Sita, Angew. Chem., Int. Ed. Engl., 1985, 24, 1 CrossRef.
  14. J. S. Rollet, Computing Methods in Crystallography, Pergamon Press, Oxford, 1965 Search PubMed.
  15. A. C. T. North, D. C. Philips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351 CrossRef.
  16. H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876 CrossRef.
  17. D. J. Watkin, J. R. Carruthers and P. W. Betteridge, CRYSTALS user guide, Chemical Crystallography Laboratory, University of Oxford, 1985.
  18. International Tables for Crystallography, Kynoch Press, Birmingham Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.