Total synthesis of cytochalasin D: total synthesis and full structural assignment of cytochalasin O

(Note: The full text of this document is currently only available in the PDF Version )

Eric Merifield and Eric J. Thomas


Abstract

A total synthesis of cytochalasin D 3 is reported in which the key step is an intramolecular Diels–Alder reaction used to close the 11-membered ring simultaneously introducing the required stereochemistry at four of the stereogenic centres, C(4), C(5), C(8) and C(9). The precursor 21 for the Diels–Alder reaction was prepared from the aldehyde 13 by condensation with the dienyl phosphonate 14 to give the triene 15 which, after conversion into the acyl imidazole 17, was used to acylate the pyrrolidinone 18. The unstable pyrrolinone 21 was then generated from the pyrrolidinone by phenylselenation–oxidative elimination and was cyclised by heating in toluene under high dilution conditions to give the macrocyclic triene 22 (25–30%). Selective functionalisation of the double-bonds in this triene was investigated with epoxidation being selective for the 17,18-double-bond and hydroxylation using osmium tetroxide taking place selectively at the 6,7-double-bond. For completion of the synthesis of cytochalasin D 3, the 6,7-diol 26 was converted into the exocyclic alkene 30 by protection and dehydration. Further hydroxylation using osmium tetroxide gave the diol 31 which was taken through to the enone 36 by protection followed by phenylselenation, N-debenzoylation and oxidative elimination. Reduction under Luche’s conditions gave the alcohol 37 which was converted into the acetate 41 by acetylation followed by protecting group exchange. Selective deprotection of the vicinal diol and mild oxidation then gave the ketone 43. Final deprotection gave cytochalasin D 3 so completing the first total synthesis of this natural product.

During the course of this work, the Diels–Alder adduct 22 was oxidised using an excess of osmium tetroxide to give the tetraol 28. After protection as its bis-acetonide 46, this was converted into the allylic acetate 51 using the chemistry developed during the synthesis of cytochalasin D 3. Selective hydrolysis of the 17,18-acetonide and oxidation under Swern conditions gave the hydroxyketone 53 which on deprotection gave cytochalasin O 54 so confirming the structure of this natural product.


References

  1. G. S. Pendse, Recent Advances in Cytochalasans, Chapman and Hall, London, 1986 Search PubMed.
  2. M. Binder and C. Tamm, Angew. Chem., Int. Edn. Engl., 1973, 12, 370 CrossRef CAS.
  3. G. Buchi, Y. Kitaura, S.-S. Yuan, H. E. Wright, J. Clardy, A. L. Demain, T. Glinsukon, N. Hunt and G. N. Wogan, J. Am. Chem. Soc., 1973, 95, 5423 CrossRef CAS.
  4. E. J. Thomas, Acc. Chem. Res., 1991, 24, 229 CrossRef CAS.
  5. G. Stork, Y. Nakahara, Y. Nakahara and W. J. Greenlee, J. Am. Chem. Soc., 1978, 100, 7775 CrossRef CAS; S. Masamune, Y. Hayase, W. Schilling, W. K. Chan and G. S. Bates, J. Am. Chem. Soc., 1977, 99, 6756 CrossRef CAS; S. G. Pyne, M. J. Hensel and P. L. Fuchs, J. Am. Chem. Soc., 1982, 104, 5719 CrossRef CAS; J. T. Palmer, K. S. Learn and P. L. Fuchs, Synth. Commun., 1986, 16, 1315 CAS.
  6. G. Stork and E. Nakamura, J. Am. Chem. Soc., 1983, 105, 5510 CrossRef CAS; S. J. Bailey, E. J. Thomas, S. M. Vather and J. Wallis, J. Chem. Soc., Perkin Trans. 1, 1983, 851 RSC.
  7. E. Vedejs, M. J. Arnost, J. M. Eustache and G. A. Krafft, J. Org. Chem., 1982, 47, 4384 CrossRef CAS; E. Vedejs, J. G. Reid, J. D. Rodgers and S. J. Wittenberger, J. Am. Chem. Soc., 1990, 112, 4351 CrossRef CAS; E. Vedejs and S. J. Wittenberger, J. Am. Chem. Soc., 1990, 112, 4357 CrossRef CAS.
  8. D. A. Clark and P. L. Fuchs, J. Am. Chem. Soc., 1979, 101, 3567 CrossRef CAS.
  9. E. Vedejs and S. Ahmad, Tetrahedron Lett., 1988, 29, 2291 CrossRef CAS.
  10. B. M. Trost, M. Ohmori, S. A. Boyd, H. Okawara and S. J. Brickner, J. Am. Chem. Soc., 1989, 11, 8281 CrossRef.
  11. E. J. Thomas and J. W. F. Whitehead, J. Chem. Soc., Perkin Trans. 1, 1989, 507 RSC; R. Sauter, E. J. Thomas and J. P. Watts, J. Chem. Soc., Perkin Trans. 1, 1989, 519 RSC.
  12. S. A. Harkin, R. H. Jones, D. J. Tapolczay and E. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1989, 489 RSC; E. J. Thomas and J. W. F. Whitehead, J. Chem. Soc., Perkin Trans. 1, 1989, 499 RSC.
  13. H. Dyke, P. G. Steel and E. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1989, 525 RSC.
  14. A. P. Craven, H. Dyke and E. J. Thomas, Tetrahedron, 1989, 45, 2417 CrossRef CAS.
  15. R. L. Edwards, D. J. Maitland and A. J. S. Whalley, J. Chem. Soc., Perkin Trans. 1, 1989, 57 RSC.
  16. Preliminary communication: E. Merifield and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1990, 464 Search PubMed.
  17. H. C. Brown and K. S. Bhat, J. Am. Chem. Soc., 1986, 108, 293 CrossRef CAS; E. J. Thomas and J. P. Watts, J. Chem. Soc., Chem. Commun., 1990, 467 RSC.
  18. G. B. Bennett, Synthesis, 1977, 589 CrossRef CAS.
  19. D. J. Faulkner and M. R. Petersen, J. Am. Chem. Soc., 1973, 95, 553 CrossRef CAS.
  20. A. Bernardi, S. Cardani, T. Pilati, G. Poli, C. Scolastico and R. Villa, J. Org. Chem., 1988, 53, 1600 CrossRef CAS.
  21. C. C. Tseng, S. Terashima and S.-I Yamada, Chem. Pharm. Bull., 1977, 25, 29 CAS.
  22. A. L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, 103, 5454 CrossRef CAS.
  23. D. C. Aldridge and W. B. Turner, J. Chem. Soc. (C), 1969, 923 RSC; H. Minato and H. Matsumoto, J. Chem. Soc. (C), 1970, 38 RSC.
  24. M. Binder, C. Tamm, W. B. Turner and H. Minato, J. Chem. Soc., Perkin Trans. 1, 1973, 1146 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.