Synthetic studies on the glycosylation of the base residues of inosine and uridine

(Note: The full text of this document is currently only available in the PDF Version )

Lorenzo De Napoli, Giovanni Di Fabio, Anna Messere, Daniela Montesarchio, Gennaro Piccialli and Michela Varra


Abstract

Ribosylation and glucosylation of the base residues of inosine and uridine have been efficiently achieved using Mitsunobu reaction, leading to the N-1 and 6-O-glycosylinosine and N-3-glycosyluridine derivatives, all with β configuration at the glycosidic carbon. The unprecedented 5-amino-1-(β-D-ribofuranosyl)imidazole-4-[N-(β-D-glucopyranosyl)carboxamide] has also been synthesised.


References

  1. D. L. Clapper, T. F. Walseth, P. J. Dargie and H. C. Lee, J. Biol. Chem., 1987, 262, 9561 CAS.
  2. H. C. Lee, R. M. Graeff and T. F. Walseth, Biochimie, 1995, 77, 345 CrossRef CAS.
  3. A. Galione, (a) Trends Pharmacol. Sci., 1992, 13, 304; (b) Science, 1993, 259, 325 Search PubMed.
  4. H. C. Lee and R. Aarhus, Biochim. Biophys. Acta, 1993, 1164, 68 CrossRef CAS.
  5. (a) Q.-M. Gu and C. J. Sih, J. Am. Chem. Soc., 1994, 116, 7481 CrossRef CAS; (b) G. A. Ashamu, A. Galione and B. V. L. Potter, J. Chem. Soc., Chem. Commun., 1995, 1359 RSC; (c) V. C. Bailey, J. K. Sethi, A. Galione and B. V. L. Potter, Chem. Commun., 1997, 695 RSC.
  6. Q.-M. Gu and C. J. Sih, J. Am. Chem. Soc., 1994, 116, 10787 CrossRef CAS.
  7. B. Rayner, C. Tapiero and J.-L. Imbach, in Chemistry and Biology of Nucleosides and Nucleotides, ed. R. E. Harmon, R. K. Robins and L. B. Townsend, Academic Press, New York, 1978, pp. 229–237 Search PubMed.
  8. K. Arimoto, C. Urashima, T. Wada and M. Sekine, Nucleosides, Nucleotides, 1996, 15, 1.
  9. (a) H. Paulsen, Angew. Chem., Int. Ed. Engl., 1982, 21, 155 CrossRef; (b) R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 25, 212 CrossRef; (c) P. M. Collins and R. J. Ferrier, Monosaccharides, Their Chemistry and Their Roles in Natural Products, John Wiley and Sons, New York, 1995 Search PubMed.
  10. L. B. Townsend, in Nucleoside Analogues: Chemistry, Biology and Medical Applications, ed. R. T. Walker, E. De Clercq and F. Eckstein, Plenum Press, New York, 1979, pp. 193–223 Search PubMed.
  11. U. Niedballa and H. Vorbruggen, J. Org. Chem., 1974, 39, 3660 CrossRef CAS.
  12. (a) C. Bonnal, C. Chavis and M. Lucas, J. Chem. Soc., Perkin Trans. 1, 1994, 1401 RSC; (b) A. Toyota, N. Katagiri and C. Kaneko, Synth. Commun., 1993, 23, 1295 CrossRef CAS; (c) M.-J. Pérez-Pérez, J. Rozenski, R. Busson and P. Herdewijn, J. Org. Chem., 1995, 60, 1531 CrossRef CAS; (d) W. A. Szarek, C. Depew, H. C. Jarrel and J. K. N. Jones, J. Chem. Soc., Chem. Commun., 1975, 648 RSC; (e) N. Hossain, J. Rozenski, E. De Clercq and P. Herdewijn, J. Org. Chem., 1997, 62, 2442 CrossRef CAS.
  13. T. Itoh, H. Takamura, K. Watanabe, Y. Araki and Y. Ishido, Carbohydr. Res., 1986, 156, 241 CrossRef CAS.
  14. Z. Wang and C. J. Rizzo, Tetrahedron Lett., 1997, 38, 8177 CrossRef CAS.
  15. M. J. Robins, in Nucleoside Analogues: Chemistry, Biology and Medical Applications, ed. R. T. Walker, E. De Clercq and F. Eckstein, Plenum Press, New York, 1979, p. 169 Search PubMed.
  16. (a) E. Shaw, J. Am. Chem. Soc., 1959, 81, 6021 CrossRef CAS; (b) L. De Napoli, A. Messere, D. Montesarchio and G. Piccialli, J. Org. Chem., 1995, 60, 2251 CrossRef; (c) L. De Napoli, A. Messere, D. Montesarchio, G. Piccialli and M. Varra, J. Chem. Soc., Perkin Trans. 1, 1997, 2079 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.