Enantioselective deprotonation of 4-tert-butylcyclohexanone by conformationally constrained chiral lithium amide bases

(Note: The full text of this document is currently only available in the PDF Version )

Varinder K. Aggarwal, Paul S. Humphries and Ashley Fenwick


Abstract

Conformationally rigid chiral lithium amides based on a tetrahydroisoquinoline motif have been prepared bearing a range of substituents at C1 and C3. These bases were tested in the asymmetric deprotonation reaction of 4-tert-butylcyclohexanone. Although the 1-substituted tetrahydroisoquinolines gave low enantioselectivity, the chiral bases containing a nitrogen heterocycle at C3 were found to induce high enantioselectivity (81% ee) in the presence of HMPA.


References

  1. For reviews on this area see (a) P. J. Cox and N. S. Simpkins, Tetrahedron: Asymmetry, 1991, 2, 1 CrossRef CAS; (b) P. O'Brien, J. Chem. Soc., Perkin Trans. 1, 1998, 1439 RSC.
  2. (a) R. P. C. Cousins and N. S. Simpkins, Tetrahedron Lett., 1989, 30, 51, 7241 CrossRef CAS; (b) C. M. Cain, R. P. C. Cousins, G. Coumbarides and N. S. Simpkins, Tetrahedron, 1990, 46, 523 CrossRef CAS; (c) B. J. Bunn and N. S. Simpkins, J. Org. Chem., 1993, 58, 533 CrossRef CAS.
  3. Originally synthesised in 1961 see: C. G. Overberger, N. P. Marullo and R. G. Hiskey, J. Am. Chem. Soc., 1961, 83, 1374 Search PubMed.
  4. (a) H.-D. Kim, R. Shirai, H. Kawasaki, M. Nakajima and K. Koga, Heterocycles, 1990, 30, 307 CrossRef CAS; (b) R. Shirai, D. Sato, K. Aoki, M. Tanaka, H. Kawasaki and K. Koga, Tetrahedron, 1997, 53, 17, 5963 CrossRef CAS.
  5. (a) A. Brossi, A. Focella and S. Teital, Helv. Chim. Acta, 1972, 55, 15 CAS; (b) M. D. Rozwadowska, Heterocycles, 1994, 39, 903 Search PubMed.
  6. (a) A. P. Venkov and L. K. Lukanov, Synthesis, 1989, 59 CrossRef CAS; (b) N. M. Mollov and A. P. Venkov, Synthesis, 1978, 62 Search PubMed; (c) A. P. Venkcv and L. K. Lukanov, Synth. Commun., 1992, 22, 3225.
  7. A. Monsees, S. Laschat, I. Dix and P. G. Jones, J. Org. Chem., 1998, 63, 10018 CrossRef CAS.
  8. J. R. Gage and D. A. Evans, Org. Synth., 1990, 68, 77 CAS.
  9. I.-S. Cho, S. S. S. Chang, C. Ho, C.-P. Lee, H. L. Ammon and P. S. Mariano, Heterocycles, 1991, 32, 2161 CAS.
  10. (a) J. F. E. Scully, J. Org. Chem., 1980, 45, 1515 CrossRef; (b) J. F. E. Scully and J. J. Schlager, Heterocycles, 1982, 19, 653.
  11. All diastereomers were separated by flash column chromatography and the relative stereochemistries confirmed by NOE studies.
  12. (a) C. Rosini, L. Franzini, A. Rafaelli and P. Salvadori, Synthesis, 1992, 503 CrossRef CAS; (b) M. Õki, Recent Advances in Atropisomerism, ed. M. Õki, John Wiley and Sons, New York, 1983; vol. 14, pp. 1–81 Search PubMed.
  13. O. Keller, W. E. Keller, G. van Look and G. Wersin, Org. Synth., 1990, Coll. Vol.7, 70.
  14. M. Asami, Bull. Chem. Soc. Jpn., 1990, 63, 721 CAS.
  15. E. J. Corey and A. W. Gross, Tetrahedron Lett., 1984, 25, 495 CrossRef CAS.
  16. The enantiomeric excesses were determined by GC analysis on a β-cyclodextrin column (16 psi, 100°C). The retention times for the two enantiomers were 29.8 min (R) and 30.3 min (S).
  17. R. Yamaguchi, T. Hamasaki, T. Sasaki, T. Ohta, K. Utimoto, S. Kozima and H. Takaya, J. Org. Chem., 1993, 58, 1136 CrossRef CAS.
  18. A. Monsees, S. Laschat, S. Kotila, T. Fox and E.-U. Würthwein, Liebigs Ann./Recl., 1997, 533 Search PubMed.
  19. V. Vecchietti, G. D. Clarke, R. Colle, G. Giardina, G. Petrone and M. Sbacchi, J. Med. Chem., 1991, 34, 2624 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.