Efficient tin hydride-mediated radical cyclisation of secondary amides. Part 1. Synthesis of a variety of substituted pyrrolidinones

(Note: The full text of this document is currently only available in the PDF Version )

Justin S. Bryans, Jonathan M. Large and Andrew F. Parsons


Abstract

The tin hydride-mediated 5-exo-trig cyclisation of a variety of secondary haloamides under mild, neutral reaction conditions has been investigated. Cyclisation was found to produce substituted pyrrolidinones in good to reasonable yield when the reaction was carried out in boiling toluene; lower yields were observed when using boiling benzene. The predominant formation of the trans-(C-3–C-4) isomers is consistent with a reversible cyclisation leading to the thermodynamically more stable product. The nature of the acceptor carbon–carbon double bond and substituents at the radical centre were found to influence the stereoselectivity of the cyclisation: more of the cis-isomer was isolated from precursors bearing a radical stabilising group on the alkene. This can be explained by a slower radical ring opening (or fragmentation) reaction leading to more of the kinetic (cis) product. The introduction of substituents alpha to nitrogen (which can influence the amide conformer population) improved the yield of cyclisation and substituted pyrrolidinones could be isolated in up to 76% yield.


References

  1. (a) H. Ishibashi, T. S. So, K. Okochi, T. Sato, N. Nakamura, H. Nakatani and M. Ikeda, J. Org. Chem., 1991, 56, 95 CrossRef CAS; (b) S. Ozaki, H. Matsushita and H. Ohmori, J. Chem. Soc., Perkin Trans. 1, 1993, 2339 RSC; (c) L. Belvisi, C. Gennari, G. Poli, C. Scolastico and B. Salom, Tetrahedron: Asymmetry, 1993, 4, 273 CrossRef CAS; (d) T. Sato, K. Tsujimoto, K.-i. Matsubayashi, H. Ishibashi and M. Ikeda, Chem. Pharm. Bull., 1992, 40, 2308 CAS; (e) B. Cardillo, R. Galeazzi, G. Mobbili, M. Orena and M. Rossetti, Heterocycles, 1994, 38, 2663 CrossRef CAS.
  2. T. Sato, Y. Wada, M. Nishimoto, H. Ishibashi and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1989, 879 RSC.
  3. G. Stork and R. Mah, Heterocycles, 1989, 28, 723 CrossRef CAS.
  4. O. M. Musa, J. H. Horner and M. Newcomb, J. Org. Chem., 1999, 64, 1022 CrossRef CAS.
  5. Part of this work has appeared as a preliminary communication: J. S. Bryans, J. M. Large and A. F. Parsons, Tetrahedron Lett., 1999, 40, 3487 Search PubMed.
  6. (a) R. Frank, B. Freudenreich, H. Quast, P. Schäfer and G. Schmitt, Liebigs Ann. Chem., 1979, 74 Search PubMed; (b) S. R. Baker, K. I. Burton, A. F. Parsons, J.-F. Pons and M. Wilson, J. Chem. Soc., Perkin Trans. 1, 1999, 427 RSC.
  7. K. Hashimoto, K. Konno and H. Shirahama, J. Org. Chem., 1996, 61, 4685 CrossRef CAS.
  8. I. De Riggi, S. Gastaldi, J.-M. Surzur, M. P. Bertrand and A. Virgili, J. Org. Chem., 1992, 57, 6118 CrossRef CAS.
  9. C. Walling and A. Cioari, J. Am. Chem. Soc., 1972, 94, 6064 CrossRef CAS.
  10. M. Rossi and D. M. Golden, J. Am. Chem. Soc., 1979, 101, 1230 CrossRef CAS.
  11. S. Furuyama, D. M. Golden and S. W. Benson, J. Am. Chem. Soc., 1969, 91, 7564 CrossRef CAS.
  12. (a) K. Nozaki, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn., 1991, 64, 2585 CAS; (b) E. J. Enholm and K. S. Kinter, J. Am. Chem. Soc., 1991, 113, 7784 CrossRef CAS; (c) E. J. Enholm, Y. Xie and K. A. Abboud, J. Org. Chem., 1995, 60, 1112 CrossRef CAS.
  13. (a) S. R. Angle, J. G. Breitenbucher and D. O. Arnaiz, J. Org. Chem., 1992, 57, 5947 CrossRef CAS; (b) M. T. Reetz, N. Griebenow and R. Goddard, J. Chem. Soc., Chem. Commun., 1995, 1605 RSC.
  14. J. Jurczak and A. Golebiowski, Chem. Rev., 1989, 89, 149 CrossRef CAS.
  15. J. M. Clough, G. Pattenden and P. G. Wight, Tetrahedron Lett., 1989, 30, 7469 CrossRef CAS.
  16. M. A. Walters, A. B. Hoem and C. S. McDonough, J. Org. Chem., 1996, 61, 55 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.