Stereocontrolled synthesis of polyhydroxylated hexahydro-1H-cyclopent[c]isoxazoles by intramolecular oxime olefin cycloadditions: an approach to aminocyclopentitols

(Note: The full text of this document is currently only available in the PDF Version )

Paul J. Dransfield, Stéphane Moutel, Michael Shipman and Vladimir Sik


Abstract

A series of alk-5-enyl aldehydes derived from various carbohydrates (D-glucose, D-mannose, D-galactose, D-glucal) can be transformed into the corresponding oximes. Thermolysis of these oximes results in the isolation of hexahydro-1H-cyclopent[c]isoxazoles in good yields via intramolecular oxime olefin cycloadditions. Modest to excellent levels of diastereocontrol are observed in these cycloaddition reactions depending on the precise nature of the oxime precursor. In the best case, D-glucose-derived oxime 4 produces hexahydro-1H-cyclopent[c]isoxazole 5 as the sole product in quantitative yield. When the oxime possesses a substituent (OBn or OBz) adjacent to the oxime carbon atom, it is observed that reactions show a preference to produce the diastereomeric cycloadduct in which this substituent is located in an exo orientation relative to the newly formed hexahydro-1H-cyclopent[c]isoxazole ring system. The role of the solvent polarity on the diastereochemical outcome of these reactions is briefly discussed. Unsuccessful efforts to extend this chemistry to oximes derived from alk-4-enyl aldehydes are also presented. Finally, it is demonstrated that the hexahydro-1H-cyclopent[c]isoxazoles can be transformed into stereochemically defined aminocyclopentitols.


References

  1. T. Aoyagi, T. Yamamoto, K. Kojiri, H. Morishima, M. Nagai, M. Hamada, T. Takeuchi and H. Umezawa, J. Antibiot., 1989, 42, 883 CAS.
  2. O. Ando, H. Satake, K. Itoi, A. Sato, M. Nakajima, S. Takahashi, H. Haruyama, Y. Ohkuma, T. Kinoshita and R. Enokita, J. Antibiot., 1991, 44, 1165 CAS.
  3. For a recent review, see A. Berecibar, C. Grandjean and A. Siriwardena, Chem. Rev., 1999, 99, 779 Search PubMed.
  4. For a preliminary account of part of this work, see S. Moutel and M. Shipman, Synlett, 1998, 1333 Search PubMed.
  5. W. Oppolzer and K. Keller, Tetrahedron Lett., 1970, 1117 CrossRef CAS.
  6. M. R. Slabaugh and W. C. Wildman, J. Org. Chem., 1971, 36, 3202 CrossRef.
  7. (a) R. Grigg and S. Thianpantangul, J. Chem. Soc., Perkin Trans. 1, 1984, 653 RSC; (b) R. Grigg, J. Markandu, T. Perrior, S. Surendrakumar and W. J. Warnock, Tetrahedron Lett., 1990, 31, 559 CrossRef CAS; (c) R. Grigg, F. Heaney, J. Markandu, S. Surendrakumar, M. Thornton-Pett and W. J. Warnock, Tetrahedron, 1991, 47, 4007 CrossRef CAS.
  8. M. H. Norman and C. H. Heathcock, J. Org. Chem., 1987, 52, 226 CrossRef CAS.
  9. (a) A. Padwa, U. Chiacchio, D. C. Dean, A. M. Schostall, A. Hassner and K. S. K. Murthy, Tetrahedron Lett., 1988, 29, 4169 CrossRef CAS; (b) A. Hassner, R. Maurya and E. Mesko, Tetrahedron Lett., 1988, 29, 5313 CrossRef CAS; (c) A. Hassner and R. Maurya, Tetrahedron Lett., 1989, 30, 2289 CrossRef CAS; (d) A. Hassner and R. Maurya, Tetrahedron Lett., 1989, 30, 5803 CrossRef CAS; (e) A. Hassner, R. Maurya, A. Padwa and W. H. Bullock, J. Org. Chem., 1991, 56, 2775 CrossRef CAS; (f) A. Hassner, R. Maurya, O. Friedman, H. E. Gottleib, A. Padwa and D. Austin, J. Org. Chem., 1993, 58, 4539 CrossRef CAS.
  10. (a) A. Arnone, M. Cavicchioli, A. Donadelli and G. Resnati, Tetrahedron; Asymmetry, 1994, 5, 1019 Search PubMed; (b) S. Baskaran and H. G. Aurich, Synlett, 1998, 277 CAS.
  11. G. V. M. Sharma, I. Srinivas Reddy, V. Goverdhan Reddy and A. V. Rama Roa, Tetrahedron: Asymmetry, 1999, 10, 229 CrossRef CAS.
  12. (a) B. Bernet and A. Vasella, Helv. Chim. Acta, 1979, 62, 1990 CrossRef CAS; (b) J. K. Gallos, A. E. Koumbis and N. E. Apostolakis, J. Chem. Soc., Perkin Trans. 1, 1997, 2457 RSC.
  13. All the aldehydes used in this study were made from the appropriate 6-deoxy-6-iodo carbohydrate derivative by treatment with activated zinc dust in ethanol. The original method as described by Vasella (ref. 12a) used the corresponding 6-bromo-6-deoxy compounds.
  14. A. Fuerstner, D. Jumbam, J. Teslic and H. Weidmann, J. Org. Chem., 1991, 56, 2213 CrossRef.
  15. R. J. Ferrier, R. H. Furneaux, P. Prasit, P. C. Tyler, K. L. Brown, G. J. Gainsford and J. W. Diehl, J. Chem. Soc., Perkin Trans. 1, 1983, 1621 RSC.
  16. J. J. C. Grové, C. W. Holzapfel and D. B. G. Williams, Tetrahedron Lett., 1996, 37, 1305 CrossRef.
  17. J. Désiré and J. Prandi, Tetrahedron Lett., 1997, 38, 6189 CrossRef CAS.
  18. NOEs of similar magnitude were observed between such trans hydrogens in some of the other cycloadducts. For example, for bicycle 8, small NOEs were measured between H-6 and H-6a (H-6 → H-6a {3.9%}; H-6a → H-6 {3.7%}).
  19. L. A. Paquette and S. Bailey, J. Org. Chem., 1995, 60, 7849 CrossRef CAS.
  20. For a discussion and leading reference, see ref. 10a..
Click here to see how this site uses Cookies. View our privacy policy here.