Synthesis of starburst hexa(oligoanilinated) C60 using hexanitro[60]fullerene as a precursor

(Note: The full text of this document is currently only available in the PDF Version )

Vijayaraj Anantharaj, Lee Y. Wang, Taizoon Canteenwala and Long Y. Chiang


Abstract

Efficient syntheses of starburst hexaanilino, hexa(dianilino), hexa(tetraanilino), and hexa(hexadecaanilino)[60]fullerenes (HHDAF) were demonstrated using hexanitro[60]fullerene (HNF) as a reactive precursor molecule. The tertiary nitro groups of HNF were found to act as excellent leaving groups for replacement by a nucleophilic substituent. Utilizing this reactivity with electron-donor nucleophiles, a synthetic approach was developed for the production of oligoanilinated fullerenes as intramolecular donor–acceptor A–(D)6 starburst macromolecules with a well-defined arm number and chain length. The reactivity of HNF with oligomeric anilines increases with increasing number of repeating aniline units. Only an equal molar quantity of tetraaniline and hexadecaaniline was necessary for a complete reaction with HNF under mild conditions. The quantitative measurement of the material’s proton counts over the 1H NMR spectrum was utilized for determining the number of addends per C60 in the composition of oligoanilinated fullerenes. As a result, the NMR data fits well with the structure of tetraanilinated and hexadecaanilinated fullerenes, containing 6 tetraanilino and hexadecaanilino arms per C60, respectively. This composition of HHDAF was also supported by the DCI-MS spectroscopic data showing an approximate correlation of the total relative peak intensities of fragmented oligoanilino mass ion groups. The optical properties of hexa(hexadecaanilino)[60]fullerenes revealed a close similarity with that of high molecular weight polyanilines.


References

  1. A. W. Jensen, S. R. Wilson and D. I. Schuster, Bioorg. Med. Chem., 1996, 4, 767 CrossRef CAS.
  2. Q. Zheng, R. Sun, X. Zhang, T. Masuda and T. Kobayashi, Jpn. J. Appl. Phys., 1997, 36, 1675 CrossRef.
  3. J. McElvain, M. Keshavarz, H. Wang, F. Wudl and A. J. Heeger, J. Appl. Phys., 1997, 81, 6468 CrossRef CAS.
  4. Y. Tajima, Y. Tezuka, T. Ishii and K. Takeuchi, Polym. J., 1997, 29, 1016 Search PubMed.
  5. Y. Kojima, T. Matsuoka, H. Takahashi and T. Kurauchi, Macromolecules, 1995, 28, 8868 CrossRef CAS.
  6. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789 CrossRef CAS.
  7. S. V. Frolov, P. A. Lane, M. Ozaki, K. Yoshino and Z. V. Vardeny, Chem. Phys. Lett., 1998, 286, 21 CrossRef CAS.
  8. E. T. Samulski, J. M. DeSimmone, M. O. Hunt, Jr., Y. Z. Menceloglu, R. C. Jarnagin, G. A. York, K. B. Labat and H. Wang, Chem. Mater., 1992, 4, 1153 CrossRef.
  9. Y. Chen, W. S. Huang, Z. E. Huang, R. F. Cai, H. K. Yu, S. M. Chen and X. M. Yan, Eur. Polym. J., 1997, 33, 823 CrossRef CAS.
  10. Y. Ederle and C. Mathis, Macromolecules, 1997, 30, 2546 CrossRef CAS.
  11. M. M. Khaled, R. T. Carlin, P. C. Trulove, G. R. Eaton and S. S. Eaton, J. Am. Chem. Soc., 1994, 116, 3465 CrossRef CAS.
  12. C. J. Hawker, K. L. Wooley and M. J. Frechet, J. Chem. Soc., Chem. Commun., 1994, 925 RSC.
  13. E. Cloutet, Y. Gnanou, J. L. Fillaut and D. Astruc, Chem. Commun., 1996, 1565 RSC.
  14. L. Y. Chiang, L. Y. Wang, S. M. Tseng, J. S. Wu and K. H. Hsieh, J. Chem. Soc., Chem. Commun., 1994, 2675 RSC.
  15. Y. Ederle and C. Mathis, Macromolecules, 1997, 30, 4262 CrossRef CAS.
  16. C. E. Bunker, G. E. Lawson and Y. P. Sun, Macromolecules, 1995, 28, 3744 CrossRef CAS.
  17. T. Cao and S. E. Webber, Macromolecules, 1996, 29, 3826 CrossRef CAS.
  18. W. T. Ford, T. D. Graham and T. H. Mourey, Macromolecules, 1997, 30, 6422 CrossRef CAS.
  19. L. Y. Chiang, L. Y. Wang, S. M. Tseng, J. S. Wu and K. H. Hsieh, Synth. Met., 1995, 70, 1477 CrossRef CAS.
  20. L. Y. Chiang, L. Y. Wang and C. S. Kuo, Macromolecules, 1995, 28, 7574 CrossRef CAS.
  21. F. Wang, R. D. Rauch and T. L. Rose, J. Am. Chem. Soc., 1997, 119, 11106 CrossRef CAS.
  22. A. D. MacDirarmid and A. J. Epstein, Faraday Discuss., Chem. Soc., 1989, 88, 317 RSC.
  23. E. M. Genies, A. Boyle, M. Lapkowski and C. Tsintavis, Synth. Met., 1990, 36, 139 CrossRef CAS.
  24. F. L. Lu, F. Wudl, M. Nowak and A. J. Heeger, J. Am. Chem. Soc., 1986, 108, 8311 CrossRef CAS.
  25. J. M. Ginder, A. J. Epstein, R. W. Bigelow, A. F. Richter and A. G. MacDiarmid, Bull. Am. Phys. Soc., 1986, K17 Search PubMed.
  26. Y. Wei, C. Yang and T. Ding, Tetrahedron Lett., 1996, 37, 731 CrossRef CAS.
  27. W. J. Zhang, J. Feng, A. G. MacDiarmid and A. J. Epstein, Synth. Met., 1997, 84, 119 CrossRef CAS.
  28. The Chemistry of Fullerenes, ed. R. Taylor, World Scientific, Singapore, 1995 Search PubMed.
  29. V. Anantharaj, J. Bhonsle, T. Canteenwala and L. Y. Chiang, J. Chem. Soc., Perkin Trans. 1, 1999, 31 RSC.
  30. L. Y. Chiang, J. B. Bhonsle, L. Y. Wang, S. F. Shu, T. M. Chang and J. R. Hwu, Tetrahedron, 1996, 52, 4963 CrossRef CAS.
  31. F. Wudl, A. Hirsch, K. C. Khemani, T. Suzuki, P. M. Allemand, A. Koch, H. Eckert, G. Srdanov and H. M. Webb, ACS Symp. Ser., 1992, 481, 161 CAS.
  32. A. Hirsch, Q. Li and F. Wudl, Angew. Chem., Int. Ed. Engl., 1991, 30, 1309 CrossRef.
  33. Z. Slanina, T. Sugiki, L. Y. Chiang and E. Osawa, in Fullerenes, vol. 5, eds. R. S. Ruo and K. S. Kadish, The Electrochem. Soc., Pennington, NJ, 1997, p. 167 and 721 Search PubMed.
  34. X. Zhao, Z. Slanina, L. Y. Chiang and E. Osawa, in Fullerenes, vol. 6, eds. R. S. Ruo and K. S. Kadish, The Electrochem. Soc., Pennington, NJ, 1998, p. 130 Search PubMed.
  35. L. Y. Wang, V. Anantharaj, K. Ashok and L. Y. Chiang, Synth. Met., 1999, 103, 2350 CrossRef CAS.
  36. Y. Cao, P. Smith and A. J. Heeger, Synth. Met., 1989, 32, 263 CrossRef CAS.
  37. 1H NMR spectrum showed a mixture of the B-form and Q-form of dianilines in a ratio of roughly 1:1; the B-form δ 4.54 (s, 2H), 6.50 (d, 2H), 6.54 (t, 1H), 6.75 (d, 2H), and 6.83 (d, 4H). The Q-form δ 6.50 (d, 2H), 6.54 (t, H), 6.75 (d, 2H), 7.05 (d, 2H), 7.11 (d, 2H), and 7.44 (s, 1H).
Click here to see how this site uses Cookies. View our privacy policy here.