Asymmetric synthesis of (+)- and (–)-dihydropinidines: diastereoselective addition to chiral imine or 1,3-oxazolidine derived from (R)-phenylglycinol as a single starting material with organometallic reagents

(Note: The full text of this document is currently only available in the PDF Version )

Takayasu Yamauchi, Hideki Fujikura, Kimio Higashiyama, Hiroshi Takahashi and Shigeru Ohmiya


Abstract

The asymmetric synthesis of the enantiomeric pair of (+)- and (–)-dihydropinidines has been accomplished. Our strategy was based on the enantioselective construction of both enantiomers of the natural products by using a single chiral source, (R)-phenylglycinol. Both routes were carried out by similar processes, except for either the presence of an imine or 1,3-oxazolidine intermediate. Excellent diastereoselectivity was observed in the reaction of chiral imines and 1,3-oxazolidines with organometallic reagents, to give the chiral amines in high chemical yields. The absolute configuration of both amines was determined by converting each of them into dihydropinidine. The asymmetric synthesis of the (+)- and (–)-dihydropinidine piperidine alkaloids was realized in four steps each and in 46 and 59% overall yield, respectively, from 6 and 11.


References

  1. For a recent review on additions of organometallic reagents to C=N bonds see: (a) D. Enders and U. Reinhold, Tetrahedron: Asymmetry, 1997, 8, 1895 CrossRef CAS; (b) R. Bloch, Chem. Rev., 1998, 98, 1407 CrossRef CAS.
  2. (a) K. Higashiyama, H. Inoue and H. Takahashi, Tetrahedron Lett., 1992, 33, 235 CrossRef CAS; (b) Tetrahedron, 1994, 50, 1083 Search PubMed; (c) K. Higashiyama, H. Inoue, T. Yamauchi and H. Takahashi, J. Chem. Soc., Perkin Trans. 1, 1995, 111 RSC; (d) K. Higashiyama, H. Fujikura and H. Takahashi, Chem. Pharm. Bull., 1995, 43, 722 CAS; (e) T. Yamauchi, H. Takahashi and K. Higashiyama, ibid., 1998, 46, 384 Search PubMed; (f) Heterocycles, 1998, 48, 1813 Search PubMed.
  3. G. M. Strunz and J. A. Findlay, Pyridine and Piperidine Alkaloids, in The Alkaloids, ed. A. Brossi, Academic Press, New York, 1985, vol. 26, pp. 89–174 Search PubMed.
  4. A. B. Attygalle, S. C. Xu, K. D. McCormick, J. Meinwald, C. L. Blankespoor and T. Eisner, Tetrahedron, 1993, 49, 9333 CrossRef CAS.
  5. (a) Z. Lu and W. Zhou, J. Chem. Soc., Perkin Trans. 1, 1993, 593 RSC; (b) D. L. Comins, G. Chung and M. A. Foley, Heterocycles, 1994, 37, 1121 CrossRef CAS; (c) M. Amat, N. Lior, J. Hidalgo, A. Hemandez and J. Bosch, Tetrahedron: Asymmetry, 1996, 7, 977 CrossRef CAS; (d) R. Chenevert and M. Dickman, J. Org. Chem., 1996, 61, 3332 CrossRef CAS; (e) O. Muraoka, B.-Z. Zheng, K. Okumura, E. Tabata, G. Tanabe and M. Kubo, J. Chem. Soc., Perkin Trans. 1, 1997, 113 RSC; (f) Y. Bubnov, E. V. Klimkina, A. V. Ignatenko and I. D. Gridnev, Tetrahedron Lett., 1997, 38, 4631 CrossRef CAS; (g) T. Momose, M. Toshima, N. Toyooka, Y. Hirai and C. H. Eugster, J. Chem. Soc., Perkin Trans. 1, 1997, 1307 RSC; (h) M. Weymann, W. Pfrengle, D. Schollmeyer and H. Kunz, Synthesis, 1997, 1151 CrossRef CAS; (i) F. A. Davis and J. M. Szewczyk, Tetrahedron Lett., 1998, 39, 5951 CrossRef CAS; (j) A. R. Katritzky, G. Qiu, B. Yang and P. J. Steel, J. Org. Chem., 1998, 63, 6699 CrossRef CAS.
  6. K. Higashiyama, K. Nakahata and H. Takahashi, Heterocycles, 1992, 33, 17 CAS.
  7. A. I. Meyers, G. S. Poindexter and Z. Brich, J. Org. Chem., 1978, 43, 892 CrossRef CAS.
  8. J. Hine and C. Y. Yeh, J. Am. Chem. Soc., 1967, 89, 2669 CrossRef CAS.
  9. T. Imamoto, N. Takiyama and K. Nakamura, Tetrahedron Lett., 1985, 26, 4763 CrossRef CAS.
  10. R. K. Hill and T. Yuri, Tetrahedron, 1977, 33, 1569 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.