Highly cis- or trans-selective oxygen to carbon rearrangements of anomerically linked 6-substituted tetrahydropyranyl enol ethers

(Note: The full text of this document is currently only available in the PDF Version )

Darren J. Dixon, Steven V. Ley and Edward W. Tate


Abstract

Low temperature Lewis acid catalysed oxygen to carbon rearrangements of anomerically linked 6-substituted tetrahydropyranyl enol ethers lead to the corresponding trans-ketones in a highly diastereoselective manner, whereas at higher temperatures the cis-ketones are formed with a high degree of selectivity under thermodynamic control.


References

  1. For excellent reviews see: (a) D. Levy and C. Tang, The Chemistry of C-Glycosides, Pergamon, 1995 Search PubMed; (b) M. H. D. Postema, Tetrahedron, 1992, 48, 8545 CrossRef CAS.
  2. M. F. Buffet, D. J. Dixon, G. L. Edwards, S. V. Ley and E. W. Tate, Synlett, 1997, 1055 CrossRef CAS.
  3. For related examples see: (a) J. Herscovici, S. Delatre and K. Antonakis, J. Org. Chem., 1987, 52, 5691 CrossRef CAS; (b) K. Mikami and H. Kishino, Tetrahedron Lett., 1996, 37, 3705 CrossRef CAS.
  4. For related rearrangements at benzylic positions see: (a) J. Wennerberg, L. Eklund, M. Polla and T. Frejd, Chem. Commun., 1997, 445 RSC; (b) J. Wennerberg and T. Frejd, Acta Chem. Scand., 1998, 52, 95 CAS.
  5. M. F. Buffet, D. J. Dixon, S. V. Ley and E. W. Tate, Synlett, 1998, 1091 CrossRef CAS.
  6. D. J. Dixon, S. V. Ley and E. W. Tate, Synlett, 1998, 1093 CrossRef CAS.
  7. D. J. Dixon, S. V. Ley and E. W. Tate, J. Chem. Soc., Perkin Trans. 1, 1998, 3125 RSC.
  8. For related examples see: (a) M. Takahashi, H. Suzuki, Y. Moro-oka and T. Ikawa, Tetrahedron Lett., 1982, 23, 4031 CrossRef CAS; (b) R. Menicagli, C. Malanga, M. Dell'Innocenti and L. Lardicci, J. Org. Chem., 1987, 52, 5700 CrossRef CAS; (c) H. Frauenrath and J. Runsink, J. Org. Chem., 1988, 53, 1860 CrossRef CAS; (d) A. Ricci, A. Degl'Innocenti, A. Capperucci, C. Faggi, G. Seconi and L. Favaretto, Synlett, 1990, 471 CrossRef CAS; (e) D. G. Bourke, D. J. Collins, A. I. Hibbered and M. D. McLeod, Aust. J. Chem., 1996, 49, 425 CAS; (f) M. Sollogoub, J.-M. Mallet and P. Sinaÿ, Tetrahedron Lett., 1998, 39, 3471 CrossRef CAS.
  9. Fresh Tebbe reagent (purchased from Sigma-Aldrich Chemical Co.) is required for this reaction to proceed smoothly. It was found that if an older batch of Tebbe reagent was used the Lewis acidity of the degraded reagent was sufficient to cause some decomposition during the methylenation reaction.
  10. Typical experimental procedure for the transformation of 5 into 8 and 9: To a stirred solution of 5(0.100 g, 0.44 mmol) in dichloro-methane (1.5 mL) at –78 °C was added TMSOTf (0.004 mL, 0.022 mmol). After stirring at –78 °C for 5 min the reaction mixture was quenched by the addition of phosphate buffer (pH 7.4, 3 mL), the aqueous layer extracted with diethyl ether (3 × 5mL) and the combined organic extracts dried (MgSO4), filtered and evaporated in vacuo to give a slightly yellow oil. 1H NMR spectroscopic analysis of this crude product showed a 3:97 ratio of 9:8. Purication by silica column chromatography, eluting with 20% diethyl ether–light petroleum (bp 40–60 °C), gave 9(0.002 g, 2%) and 8(0.070 g, 70%) as colourless oils. Characterisation data for 9: νmax(thin film)/cm–1 2930, 2858, 1717, 1458, 1356, 1197, 1080; δH(400 MHZ; CDCl3) 3.74–3.68 (1H, m, OCHCH2CO), 3.26–3.22 (1H, m, CHOCHCH2CO), 2.64 (1H, dd, J 15.1 and 8.1, CHHCOCH3), 2.38 (1H, dd, J15.1 and 4.8, CHHCOCH3), 2.16 (3H, s, COCH3), 1.82–1.11 (16H, m, 8 × CH2), 0.86 (3H, t, J7.0, CH2CH3); δC(100 MHZ; CDCl3) 207.8 (COCH3), 78.0 (OCHCH2CO), 74.4 (CHOCHCH2CO), 50.4 (CH2CO), 36.4, 31.8, 31.6, 31.3, 31.0 (COCH3), 29.3, 25.5, 23.5, 22.6, 14.0 (CH2CH3); m/z(FAB) 109 (62%), 113 (53%), 136 (60%), 154 (54%), 169 (100%), 227 (40%)(Found: MH+, 227.2015. C14H27O2 requires 227.2011)(Found: C, 74.79; H, 11.58. C14H26O2 requires: C, 74.96; H, 11.60%). Characterisation data for 8: νmax(thin film)/cm–1 2930, 2858, 1715, 1460, 1357, 1203, 1162, 1095, 1041; δH(400 MHZ; CDCl3) 4.42–4.19 (1H, m, OCHCH2CO), 3.69–3.61 (1H, m, CHOCHCH2CO), 2.75 (1H, dd, J 15.1 and 8.3, CHHCOCH3), 2.42 (1H, dd, J 15.1 and 7.4, CHHCOCH3), 2.17 (3H, s, COCH3), 1.71–1.26 (16H, m, 8 × CH2), 0.87 (3H, t, J 6.4, CH2CH3); δC(100 MHZ; CDCl3) 207.4 (COCH3), 71.7 (OCHCH2CO), 67.5 (CHOCHCH2CO), 48.2 (CH2CO), 33.0, 31.8, 30.5 (COCH3), 30.2, 29.6, 29.3, 25.7, 22.6, 18.4, 14.0 (CH2CH3); m/z(FAB) 109 (71%), 169 (100%), 227 (78%)(Found: MH+, 227.2016. C14H27O2 requires 227.2011)(Found: C, 74.86; H, 11.57. C14H26O2 requires: C, 74.96; H, 11.60%).
  11. For a transition-state discussion of this phenomenon, see P. Deslongchamps, Pure Appl. Chem., 1993, 65, 1161 Search PubMed.
  12. Base-induced reversible β-elimination as a method for forming cis-tetrahydropyrans is well-established in synthesis for example: E. D. Bergman, D. Ginsburg and R. Pappo, Org. React. (N.Y.), 1959, 10, 179 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.