Efficient chirality transcription utilizing a cerium(IV) double decker porphyrin: a prototype for development of a molecular memory system

(Note: The full text of this document is currently only available in the PDF Version )

Atsushi Sugasaki, Masato Ikeda, Masayuki Takeuchi, Andrew Robertson and Seiji Shinkai


Abstract

A cerium(IV) double decker porphyrin 2 bearing two pairs of 4-pyridyl groups and two pairs of 3,5-dimethoxyphenyl groups was synthesized. In the presence of chiral dicarboxylic acid guests with a two carbon spacer [e.g., (1R,2R)-cyclohexane-1,2-dicarboxylic acid and Boc-L-aspartic acid] 2 gave a CD-active species. The plots of the CD intensity vs. the guest concentration showed a sigmoidal curvature, a sign of homotropic, positive allosterism. Analysis according to the Hill equation indicated that the guests were bound autoacceleratively. Even after the chiral guests were removed by the addition of excess pyridine, 2 remained CD-active because of its inherent chirality. Thereafter, the CD intensity decreased very slowly as a result of internal rotation of the porphyrin subunits. Thermodynamic analysis of this racemization process gave ΔG[hair space] 298 = 23.0 kcal mol–1, ΔH[hair space] 298 = 18.1 kcal mol–1 and ΔS[hair space] 298 = –16.4 cal mol–1 K–1. Observations and calculations indicate that the chiral memory can be preserved for 3 days at 0 °C and for one year at –37 °C. In conclusion, this is a rare artificial system for which a homotropic, positive allosterism is observable and in which the guest chirality is transcribed and stored.


References

  1. (a) M. F. Perutz, Ann. Rev. Biochem., 1979, 48, 327 CrossRef CAS; (b) J. Monod, J.-P. Changeux and F. Jacob, J. Mol. Biol., 1963, 6, 306 CrossRef CAS; (c) M. F. Perutz, G. Fermi, B. Luisi, B. Shaanan and R. C. Liddington, Acc. Chem. Res., 1987, 20, 309 CrossRef CAS.
  2. R. Gramdori, T. A. Lavoie, M. Pflumm, G. Tian, H. Niersbach, W. K. Maas, R. Fairman and J. Carey, J. Mol. Biol., 1995, 254, 150 CrossRef.
  3. J. R. Burke, M. R. Witmer, J. Tredup, R. Micanovic, K. R. Gregor, J. Lahiri, K. M. Tramposch and J. J. Villaframca, Biochemistry, 1995, 34, 15165 CrossRef CAS.
  4. (a) A. M. Filenko, V. M. Danilova and A. Sobieszek, Biophys. J., 1997, 73, 1593 CAS; (b) S. Modi, D. E. Gilham, M. J. Sutcliffe, L.-Y. Lian, W. V. Primrose, C. R. Wolf and G. C. K. Roberts, Biochemistry, 1997, 36, 4461 CrossRef CAS; (c) F. J. Bruzzese and P. R. Connelly, Biochemistry, 1997, 36, 10428 CrossRef CAS; (d) J. A. Schetz and D. R. Sibley, J. Neurochem., 1997, 68, 1990 CAS.
  5. T. G. Traylor, M. J. Mitchell, J. P. Ciconene and S. Nelson, J. Am. Chem. Soc., 1982, 104, 4986 CrossRef CAS.
  6. (a) J. Rebek, Jr, Acc. Chem. Res., 1984, 17, 258 CrossRef; (b) J. Rebek, Jr, T. Costello, L. Marshall, R. Wattley, R. C. Gadwood and K. Onan, J. Am. Chem. Soc., 1985, 107, 7481 CrossRef.
  7. (a) I. Tabushi, S. Kugimiya, M. G. Kinnaird and T. Sasaki, J. Am. Chem. Soc., 1985, 107, 4129 CrossRef; (b) I. Tabushi and S. Kugimiya, J. Am. Chem. Soc., 1986, 108, 6926 CrossRef CAS.
  8. P. D. Beer and A. S. Rothin, J. Chem. Soc., Chem. Commun., 1988, 52 RSC.
  9. R. C. Petter, J. S. Salek, C. T. Sikorski, G. Kumaravel and F.-T. Lin, J. Am. Chem. Soc., 1990, 112, 3860 CrossRef CAS.
  10. H.-J. Schneider and D. Ref, Angew. Chem., Int. Ed. Engl., 1990, 29, 1159 CrossRef.
  11. R. P. Sijbesma and R. J. Nolte, J. Am. Chem. Soc., 1991, 113, 6695 CrossRef CAS.
  12. Y. Kobuke and Y. Satoh, J. Am. Chem. Soc., 1992, 114, 789 CrossRef CAS.
  13. K. Kobayashi, Y. Asakawa, Y. Kato and Y. Aoyama, J. Am. Chem. Soc., 1992, 114, 10307 CrossRef CAS.
  14. M. Takeuchi, T. Imada and S. Shinkai, J. Am. Chem. Soc., 1996, 118, 10658 CrossRef CAS.
  15. M. Takeuchi, T. Imada and S. Shinkai, Angew. Chem., Int. Ed., 1998, 37, 2096 CrossRef CAS.
  16. M. Takeuchi, T. Imada, M. Ikeda and S. Shinkai, Tetrahedron Lett., 1998, 39, 7897 CrossRef CAS.
  17. A similar idea for memory storage was reported by Aida et al. using a chiral double-decker porphyrin: Y. Furusho, T. Kimura, Y. Mizuno and T. Aida, J. Am. Chem. Soc., 1997, 119, 5267 Search PubMed.
  18. For the syntheses of metal bis(porphyrinate) double deckers see (a) J. W. Buchler and M. Nawra, Inorg. Chem., 1994, 33, 2830 CrossRef CAS; (b) J. W. Buchler, V. Eiermann, H. Hanssum, G. Heinz, H. Rüterjans and M. Schwarzkopf, Chem. Ber., 1994, 127, 589 CAS; (c) J. W. Buchler, A. De Cian, J. Fischer, P. Hammerschmitt, J. Löffler, B. Scharbert and R. Weiss, Chem. Ber., 1989, 122, 2219 CAS; (d) J. W. Buchler and G. Heinz, Chem. Ber., 1996, 129, 1073 CAS; (e) J. W. Buchler and G. Heinz, Chem. Ber., 1996, 129, 201 CAS and references cited therein; (f) J. Jiang, K. Machida, E. Yamamoto and G. Adachi, Chem. Lett., 1991, 2035 CAS; (g) J. Jiang, K. Machida and G. Adachi, Bull. Chem. Soc. Jpn., 1992, 65, 1990 CAS; (h) J. Jiang, K. Machida and G. Adachi, J. Alloys Compd., 1993, 32, 950 and references cited therein.
  19. Precisely, an exchange process is slow on the NMR timescale when sharp signals are observed whereas it is fast when broadenings are observed.
  20. (a) J. Baldwin and C. Chothia, J. Mol. Biol., 1979, 129, 175 CrossRef CAS; (b) K. A. Connors, Binding Constants, John Wiley, New York, 1987. This system features (i) the appearance of tight isosbestic points in the CD spectra and (ii) high Hill's coecients. The results imply that the species present are only free host and 1:2 host–guest complex: that is, the concentration of 1:1 complex is practically negligible. This means that the CD intensity in the ordinate in Fig. 2 is always correlated with the concentration of 1:2 complex Search PubMed.
  21. D. Y. Dawson, H. Brand and J. Arnold, J. Am. Chem. Soc., 1994, 116, 9797 CrossRef CAS.
  22. K. Tashiro, K. Konishi and T. Aida, Angew. Chem., Int. Ed. Engl., 1997, 36, 856 CrossRef CAS.
  23. A. Job, Ann. Chim. (Paris), 1928, 9, 113 Search PubMed.
  24. For similar molecular memory storage systems see ref. 22 and E. Yashima, K. Maeda and Y. Okamoto, Nature, 1999, 399, 449 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.