Chlorophylls. IX. The first phytochlorin–fullerene dyads: synthesis and conformational studies

(Note: The full text of this document is currently only available in the PDF Version )

Juho Helaja, Andrei Y. Tauber, Yvonne Abel, Nikolai V. Tkachenko, Helge Lemmetyinen, Ilkka Kilpeläinen and Paavo H. Hynninen


Abstract

The first chlorin–fullerene electron donor–acceptor (DA) compounds have been synthesized. The synthesis produced C-2′ R and S epimers, both of which exhibited atropisomerism regarding the mutual orientation of the fullerene ball and the propionic acid residue of the phytochlorin unit. The atropisomerism arises from the short linkage between the C60 ball and the chlorin ring, which hinders free rotation of the bulky ball. Dynamic 1H NMR and molecular modelling were used in concert to investigate the atropisomerism in the metal-free DA molecules 5. The dynamic NMR-measurements showed a lower energy barrier [Ea = 21.4(5) kcal mol–1] for one stereoisomer and a higher one [Ea = 23.0(8) kcal mol–1] for the three other stereoisomers. MM+ molecular mechanic calculations were performed for each C-2′ epimer to assess the potential energy as a function of the angle of rotation about the C3–C2′ single bond. For the C-2′ R and S epimers, these calculations produced two potential energy curves that showed a near mirror-image relationship. Solvation phenomena were proposed to play an essential role in the stabilization of the isomers. Fast intramolecular photoinduced electron transfer from the chlorin donor to the fullerene acceptor was observed in polar solvents.


References

  1. M. R. Wasielewski, Chem. Rev., 1992, 92, 435 CrossRef CAS.
  2. P. A. Liddell, J. P. Sumida, A. N. Macpherson, L. Noss, G. R. Seely, K. N. Clark, A. L. Moore, T. A. Moore and D. Gust, Photochem. Photobiol., 1994, 60, 537 Search PubMed.
  3. T. Drovetskaya, C. A. Reed and P. Boyd, Tetrahedron Lett., 1995, 36, 7971 CrossRef CAS.
  4. H. Imahori, K. Yamada, M. Hasegawa, S. Taniguchi, T. Okada and Y. Sakata, Angew. Chem., Int. Ed. Engl., 1997, 36, 2626 CrossRef CAS.
  5. J. R. Bolton, Science, 1978, 202, 705.
  6. J. R. Bolton, S. J. Strickler and J. S. Connolly, Nature, 1985, 316, 495 CAS.
  7. M. Gouterman, in Optical Spectra and Electronic Structures of Porphyrins and Related Rings, The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1978, vol. 3, part A, pp. 1–165 Search PubMed.
  8. R. H. Felton, in Primary Redox Reactions of Metalloporphyrins, The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1978, vol. 5, part C pp. 53–125 Search PubMed.
  9. A. Y. Tauber, R. K. Kostiainen and P. H. Hynninen, Tetrahedron, 1994, 50, 4723 CrossRef CAS.
  10. D. G. Johnson, W. A. Svec and M. R. Wasielewski, Isr. J. Chem., 1988, 28, 193 CAS.
  11. M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc., 1993, 115, 9798 CrossRef CAS.
  12. J. Helaja, A. Y. Tauber, I. Kilpeläinen and P. H. Hynninen, Magn. Reson. Chem., 1997, 35, 619 CrossRef CAS.
  13. K. M. Smith, D. A. Go and D. J. Simpson, J. Am. Chem. Soc., 1985, 107, 4946 CrossRef CAS.
  14. M. Prato, T. Suzuki, F. Wudl, V. Lucchini and M. Maggini, J. Am. Chem. Soc., 1993, 115, 7876 CrossRef CAS.
  15. K. A. Connors, Chemical Kinetics, VCH Publishers, New York, 1990 Search PubMed.
  16. HYPERCHEM, Hypercube, http://www.hyper.com.
  17. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  18. N. V. Tkachenko, L. Rantala, A. Y. Tauber, J. Helaja, P. H. Hynninen and H. Lemmetyinen, J. Am. Chem. Soc., in the press Search PubMed.
  19. P. H. Hynninen, Acta Chem. Scand., 1977, 31B, 829 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.