The diastereoselective and enantioselective substitution reactions of an isoindoline–borane complex

(Note: The full text of this document is currently only available in the PDF Version )

Azhar Ariffin, Alexander J. Blake, Mark R. Ebden, Wan-Sheung Li, Nigel S. Simpkins and David N. A. Fox


Abstract

The alkylation of N-methylisoindoline–borane complex, using nBuLi in THF is diastereoselective, the substitution occurring predominantly syn to the borane group. Use of the sBuLi–sparteine reagent mixture in Et2O changes the diastereoselectivity observed and enables the reaction to be conducted enantioselectively, giving the chiral isoindoline–borane complexes in up to 89% ee. The relative and absolute configurations of the chiral products were established by X-ray structure determinations and NMR studies. The new asymmetric process is shown to be an enantioselective deprotonation reaction, and the intermediate organolithium is shown to be epimerisable.


References

  1. For reviews, see (a) S. V. Kessar and P. Singh, Chem. Rev., 1997, 97, 721 CrossRef CAS; (b) B. Carboni and L. Monnier, Tetrahedron, 1999, 55, 1197 CrossRef CAS.
  2. M. R. Ebden, N. S. Simpkins and D. N. A. Fox, Tetrahedron, 1998, 54, 12923 CrossRef CAS.
  3. E. Vedejs and J. T. Kendall, J. Am. Chem. Soc., 1997, 119, 6941 CrossRef CAS.
  4. A. J. Blake, M. R. Ebden, D. N. A. Fox, W.-S. Li and N. S. Simpkins, Synlett, 1998, 189 CAS.
  5. Lithiated N-formamidine tetrahydroisoquinoline derivatives are similarly configurationally unstable, see for example (a) A. I. Meyers, J. Guiles, J. S. Warmus and M. A. Gonzalez, Tetrahedron Lett., 1991, 32, 5505 CrossRef CASsee also (b) R. E. Gawley and Q. Zhang, Tetrahedron, 1994, 50, 6077 CrossRef CAS; (c) T. R. Elworthy and A. I. Meyers, Tetrahedron, 1994, 50, 6089 CrossRef CAS.
  6. Sparteine is a very important ligand for asymmetric metallation, see for reviews (a) P. Beak, A. Basu, D. J. Gallagher, Y. S. Park and S. Thayumanavan, Acc. Chem. Res., 1996, 29, 552 CrossRef CAS; (b) D. Hoppe and T. Hense, Angew. Chem., Int. Ed. Engl., 1997, 36, 2282 CrossRef CAS.
  7. In our original communication diastereomer 4 was mistakenly reported as the major product from quenching with Me3SiCl.
  8. This argument relies on the transmetallation reaction of 5a proceeding with initial retention of configuration, which can usually be assumed, see for example P. Beak and A. I. Meyers, Acc. Chem. Res., 1986, 19, 356 Search PubMed.
  9. The very small quantities of the minor isomer 4b available in non-racemic form, combined with the small values of the apparent specific rotations resulted in the misassignment.
  10. (a) D. R. Armstrong, W. Clegg, H. M. Colquhoun, J. A. Daniels, R. E. Mulvey, I. R. Stephenson and K. Wade, J. Chem. Soc., Chem. Commun., 1987, 630 RSC; (b) see also H. Nöth, S. Thomas and M. Schmidt, Chem. Ber., 1996, 129, 451 Search PubMed.
  11. (a) L. J. Beeley and C. J. M. Rockell, Tetrahedron Lett., 1990, 31, 417 CrossRef CAS; (b) A. I. Meyers and B. Santiago, Tetrahedron Lett., 1995, 36, 5877 CrossRef CAS; (c) R. E. Gawley, S. R. Chemburkar, A. L. Smith and T. V. Anklekar, J. Org. Chem., 1988, 53, 5381 CrossRef CAS.
  12. J. K. Whitesell, Chem. Rev., 1989, 89, 1581 CrossRef CAS.
  13. H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.