Substituent effects on the kinetics of reductively-initiated fragmentation of nitrobenzyl carbamates designed as triggers for bioreductive prodrugs

(Note: The full text of this document is currently only available in the PDF Version )

Michael P. Hay, Bridget M. Sykes, William A. Denny and Charmian J. O’Connor


Abstract

4-Nitrobenzyl carbamates are of interest as triggers for bioreductive drugs, particularly in conjunction with the E. coli B nitroreductase, which efficiently reduces them to the corresponding hydroxylamines. These then fragment to release highly toxic amine-based toxins. While many 4-nitrobenzyl carbamate derivatives have been evaluated as bioreductive drugs, there has been no systematic study of substituent effects on the rate of this fragmentation (which should be as fast as possible following reduction). We therefore prepared a series of 2-, 3- and α-substituted 4-[N-methyl-N-(4-nitrobenzyloxycarbonyl)amino]phenylacetamides as model compounds to study these effects. The majority of the carbamates were prepared by in situ formation of the chloroformate of the appropriate 4-nitrobenzyl alcohol and reaction with methyl 4-(methylamino)phenylacetate, followed by ester hydrolysis and 1,1[hair space]′-carbonyldiimidazole (CDI) mediated coupling with N,N-dimethylaminoethylamine. The hydroxylamines were generated by 60Co γ-ray irradiation of the nitro compounds in aqueous phosphate-buffered-propan-2-ol. The reactions were analysed by reverse-phase HPLC to determine the maximum half-life (Mt1/2) of the hydroxylamines generated, and the extent of release of amine from these after 10 half-lives (t). The parent (unsubstituted) hydroxylaminobenzyl carbamate had a Mt1/2 of 16 min under these conditions, while that of the corresponding α-methyl analogue was 9.5 min. Electron-donating substituents on the benzyl ring also accelerated fragmentation, with the data being fitted to the equation log(Mt1/2) = 0.57σ + 1.30, where σ represents σpfor 2-substituents and σm for 3-substituents. The acceleration of fragmentation of the hydroxylamines with increasing substituent electron-donation is consistent with the proposed mechanism, and is presumably due to stabilisation of the developing positive charge on the benzylic carbon. The extent of release of amine (t) also increased with increasing substituent electron-donation. These data suggest that the standard 4-nitrobenzyl carbamate trigger for nitroreductase enzyme (NTR) prodrugs can likely be improved on, by increasing the rate of fragmentation by the use of α-methyl and/or electron-donating benzyl substituents.


References

  1. D. L. Kirkpatrick, K. E. Johnson and A. C. Sartorelli, J. Med. Chem., 1986, 29, 2048 CrossRef CAS.
  2. M. Tercel, W. R. Wilson, R. F. Anderson and W. A. Denny, J. Med. Chem., 1996, 39, 1084 CrossRef CAS.
  3. (a) P. Neta and D. Behar, J. Am. Chem. Soc., 1980, 102, 4798 CrossRef CAS; (b) J. P. Pays, S. T. Blumer, S. Barel-Tosh, D. Behar and P. Neta, J. Am. Chem. Soc., 1983, 105, 320 CrossRef; (c) R. K. Norris, S. D. Barker and P. Neta, J. Am. Chem. Soc., 1984, 106, 3140 CrossRef CAS.
  4. P. L. Carl, P. K. Charkravarty and J. A. Katzenellenbogen, J. Med. Chem., 1981, 24, 479 CrossRef CAS.
  5. B. A. Teicher and A. C. Sartorelli, J. Med. Chem., 1980, 23, 955 CrossRef CAS.
  6. T.-S. Lin, L. Wang, I. Antonini, L. A. Crosby, D. A. Shiba, D. L. Kirkpatrick and A. C. Sartorelli, J. Med. Chem., 1986, 29, 84 CrossRef CAS.
  7. N. P. Michael, J. K. Brehm, G. M. Anlezark and N. P. Minton, FEMS Microbiol. Lett., 1994, 124, 195 CrossRef CAS.
  8. (a) G. M. Anlezark, R. G. Melton, R. F. Sherwood, B. Coles, F. Friedlos and R. J. Knox, Biochem. Pharmacol., 1992, 44, 2289 CrossRef CAS; (b) R. J. Knox, F. Friedlos, R. F. Sherwood, R. G. Melton and G. M. Anlezark, Biochem. Pharmacol., 1992, 44, 2297 CrossRef CAS.
  9. P. Wardman, Environ. Health Perspect., 1985, 64, 309 CrossRef CAS.
  10. (a) M. P. Hay and W. A. Denny, Drugs Future, 1996, 21, 917 Search PubMed; (b) W. A. Denny, Curr. Pharm. Des., 1996, 2, 281 Search PubMed.
  11. A. B. Mauger, P. J. Burke, H. H. Somani, F. Friedlos and R. J. Knox, J. Med. Chem., 1994, 37, 3452 CrossRef CAS.
  12. G. M. Anlezark, R. G. Melton, R. F. Sherwood, W. R. Wilson, W. A. Denny, B. D. Palmer, R. J. Knox, F. Friedlos and A. Williams, Biochem. Pharmacol., 1995, 50, 609 CrossRef CAS.
  13. (a) J. A. Bridgewater, C. J. Springer, R. J. Knox, N. P. Minton, N. P. Michael and M. K. Collins, Eur. J. Cancer, 1995, 31A, 2362 CrossRef CAS; (b) F. Friedlos, W. A. Denny, B. D. Palmer and C. J. Springer, J. Med. Chem., 1997, 40, 270 CrossRef.
  14. M. P. Hay, W. R. Wilson and W. A. Denny, Bioorg. Med. Chem. Lett., 1995, 5, 2829 CrossRef CAS.
  15. M. Tercel, W. R. Wilson and W. A. Denny, Bioorg. Med. Chem. Lett., 1996, 6, 2741 CrossRef CAS.
  16. M. Lee, J. E. Simpson, Jnr., S. Woo, C. Kaenzig, G. M. Anlezark, E. Eno-Amooquaye and P. J. Burke, Bioorg. Med. Chem. Lett., 1997, 7, 1065 CrossRef CAS.
  17. R. T. Mulcahy, J. J. Gipp, J. P. Schmidt, C. Joswig and R. F. Borch, J. Med. Chem., 1994, 37, 1610 CrossRef CAS.
  18. V. J. Shiner, Jnr., W. E. Buddenbaum, B. L. Murr and G. Lamety, J. Am. Chem. Soc., 1968, 90, 418 CrossRef.
  19. J. M. Brown, C. Christodoulou, A. S. Modak, C. B. Reese and H. T. Seranowska, J. Chem. Soc., Perkin Trans. 1, 1989, 1751 RSC.
  20. E. Boyland and R. Nery, Analyst, 1964, 89, 95 RSC.
  21. C. Hansch and A. Leo, in Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, 1979 Search PubMed.
  22. D. S. Dhanoa, S. W. Bagley, R. S. L. Chang, V. J. Liotta, T.-B. Chen, S. D. Kivlighn, G. J. Zingao, P. K. S. Sieg, A. A. Patchett and W. J. Greenlee, J. Med. Chem., 1993, 36, 4239 CrossRef CAS.
  23. S. B. Hanna, Y. Iskander and A. Salama, J. Chem. Soc., 1961, 221 RSC.
  24. Y. Imakura, K. Okimoto, T. Konishi, M. Hisazumi, J. Yamazaki, S. Kobuyashi and S. Yamashita, Chem. Pharm. Bull., 1992, 40, 1691 CAS.
  25. H. Fricke and E. J. Hart, in Radiation Dosimetry, ed. F. H. Attix and W. C. Roesch, Academic Press, New York, 1966, vol 2, p. 167 Search PubMed.