Reactions of 1,3-diethyl-2-thiobarbituric acid with aldehydes: formation of arylbis(1,3-diethyl-2-thiobarbitur-5-yl)methanes[hair space]† and crystallographic evidence for ground state polarisation in 1,3-diethyl-5-[4-(dimethylamino)benzylidene]-2-thiobarbituric acid

(Note: The full text of this document is currently only available in the PDF Version )

Jason Adamson, Benjamin J. Coe, Helen L. Grassam, John C. Jeffery, Simon J. Coles and Michael B. Hursthouse


Abstract

The reactions of 1,3-diethyl-2-thiobarbituric acid (detba) in ethanol at room temperature with 4-(dimethylamino)benzaldehyde (dmabza) or cinnamaldehyde afford the Knoevenagel products 3 and 4, respectively. Under identical conditions, pyridine-4-carbaldehyde, 4-methoxybenzaldehyde, benzaldehyde, 4-cyanobenzaldehyde, 4-nitrobenzaldehyde and 4-ferrocenylbenzaldehyde yield exclusively the arylbis(1,3-diethyl-2-thiobarbitur-5-yl)methane Michael adducts 2, 5, 6, 7, 8 and 9, respectively. Although 3 can be forced to react further by treatment with excess detba in refluxing ethanol, the product 10 is unstable in solution and readily reverts to 3. The stability of 4 is attributed to extended conjugation, and it is likely that the pronounced difference in reactivity between dmabza and the other arylaldehydes arises primarily from electronic factors, i.e. the strongly electron donating effect of the -NMe2 substituent. Single crystal X-ray structures have been determined for the products 3 and 6. The structure of 6 confirms the formation of the Michael adduct and shows that both of the detba rings are present in mixed keto–enol forms, although the oxygens differ slightly in their degree of enolic character. The bond distances in 3 provide clear evidence for extensive ground state polarisation, in accord with the marked molecular nonlinear optical properties of the analogous -N(nBu)2 compound.


References

  1. L. F. Tietze and U. Beifuss, in Comprehensive Organic Synthesis: Vol. 2, ed. B. M. Trost, Pergamon, Oxford, 1991 Search PubMed.
  2. K. Popov-Pergal and M. Pergal, Collect. Czech. Chem. Commun., 1992, 57, 1153 CAS and refs. therein.
  3. T. Koike, M. Takashige, E. Kimura, H. Fujioka and M. Shiro, Chem. Eur. J., 1996, 2, 617 CrossRef CAS and refs. therein.
  4. T. Chin, Z. Gao, I. Lelouche, Y. K. Shin, A. Purandare, S. Knapp and S. S. Isied, J. Am. Chem. Soc., 1997, 119, 12849 CrossRef CAS.
  5. S. R. Marder, D. N. Beratan and L.-T. Cheng, Science, 1991, 252, 103 CrossRef CAS.
  6. (a) S. R. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry and J. Skindhøj, Science, 1994, 263, 511 CrossRef CAS; (b) M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus and R. Wortmann, Chem. Eur. J., 1997, 3, 1091 CrossRef CAS.
  7. (a) B. J. Coe, M. C. Chamberlain, J. P. Essex-Lopresti, S. Gaines, J. C. Jeffery, S. Houbrechts and A. Persoons, Inorg. Chem., 1997, 36, 3284 CrossRef CAS; (b) B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts and A. Persoons, Chem. Commun., 1997, 1645 RSC; (c) B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts and A. Persoons, Inorg. Chem., 1998, 37, 3391 CrossRef CAS.
  8. M. Conrad and H. Reinbach, Chem. Ber., 1901, 34, 1339 Search PubMed.
  9. L. G. S. Brooker, G. H. Keyes, R. H. Sprague, R. H. VanDyke, E. VanLare, G. VanZandt, F. L. White, H. W. J. Cressman and S. G. Dent, J. Am. Chem. Soc., 1951, 73, 5332 CrossRef CAS.
  10. K. Kondo, S. Ochiai, K. Takemoto, Y. Kai, N. Kasai and K. Yoshida, Chem. Phys. Lett., 1992, 188, 282 CrossRef CAS.
  11. F. J. Kunz, P. Margaretha and O. E. Polansky, Chimia, 1970, 24, 165 CAS.
  12. Recent examples: (a) L. Prasad and M. R. Taylor, Acta Crystallogr., Sect. C, 1983, 39, 1686 CrossRef; (b) M. Millan, C. F. Conde, A. Conde and R. Marquez, Acta Crystallogr., Sect. C, 1985, 41, 274 CrossRef; (c) H. Takayanagi, S. Munemura, M. Goto, H. Ogura and M. Onda, J. Pharm. Soc. Jpn., 1986, 106, 867 CAS.
  13. G. Bourhill, J.-L. Brédas, L.-T. Cheng, S. R. Marder, F. Meyers, J. W. Perry and B. G. Tiemann, J. Am. Chem. Soc., 1994, 116, 2619 CrossRef CAS.
  14. V. Bertolasi, P. Gilli, V. Ferretti and G. Gilli, J. Chem. Soc., Perkin Trans. 2, 1997, 945 RSC.
  15. Average bond distances taken from: CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 75th edn, 1994 Search PubMed.
  16. Nonlinear Optical Properties of Organic Molecules and Crystals, eds. D. S. Chemla and J. Zyss, Academic Press, Orlando, 1987, vols. 1 and 2 Search PubMed.
  17. B. J. Coe, C. J. Jones, J. A. McCleverty, D. Bloor and G. Cross, J. Organomet. Chem., 1994, 464, 225 CrossRef CAS.
  18. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
  19. Collect: Data collection software, R. Hooft, Nonius B. V., 1998.
  20. Z. Otwinowski and W. Minor, Methods in Enzymology, Vol. 276: Macromolecular Crystallography, Part A, eds. C. W. Carter, Jr. and R. M. Sweet, Academic Press, London, 1997, p. 307 Search PubMed.
  21. (a) R. H. Blessing, Acta. Crystallogr., Sect. A, 1995, 51, 33 CrossRef; (b) R. H. Blessing, J. Appl. Crystallogr., 1997, 30, 421 CrossRef CAS.
  22. S. Mackay, C. J. Gilmore, C. Edwards, M. Tremayne, N. Stewart, K. Shankland, MaXus: a computer program for the solution and renement of crystal structures from diffraction data, University of Glasgow.
  23. G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  24. G. M. Sheldrick, SHELXL 97, Program for crystal structure renement, University of Gottingen, 1997.