Photochemical reactions of chloranil with norbornene,† bicyclo[2.1.1]hex-2-ene and cyclopentene. A novel intermolecular photocycloaddition

(Note: The full text of this document is currently only available in the PDF Version )

Max Braun, Manfred Christl, Eva-Maria Peters and Karl Peters


Abstract

The irradiation of chloranil (CA), dissolved in benzene, in the presence of norbornene gave the α,β-unsaturated α,γ-dichloro-γ-lactone 1 in 67% yield. Heretofore, such a product had not been observed in a photochemical reaction of CA with an alkene. In addition, bicyclo[2.1.1]hex-2-ene and cyclopentene furnished compounds such as 1. However, conventional products of the reaction of 3CA with alkenes were formed in these cases to a considerable extent as well. As the first step en route to 1, a [4 + 2] cycloaddition of 3CA onto norbornene is proposed giving rise to a diradical of type 23, which undergoes the opening of the six-membered ring originating from CA with formation of a β-oxoketene of type 20. The ring closure of the latter with concomitant [1,2] migration of a chlorine atom completes the sequence. On treatment with methanol, the pseudoacid chloride 1 was converted into the pseudoesters 3 and the ester 4. The structures of 3 and the 2∶1 cycloadduct 12 of cyclopentene onto CA were analysed by X-ray crystallography.


References

  1. K. Maruyama and A. Osuka, in The chemistry of quinonoid compounds, ed. S. Patai and Z. Rappoport, Wiley, New York, 1988, vol. 2, part 1, ch. 13 Search PubMed.
  2. CRC Handbook of Organic Photochemistry and Photobiology, ed. W. M. Horspool and P.-S. Song, CRC Press, Boca Raton, 1995 Search PubMed (a) D. Creed, p. 737; (b) A. C. Weedon, p. 634; D. I. Schuster, p. 652; (c) A. G. Griesbeck, p. 522.
  3. M. Braun, M. Christl, O. Deeg, M. Rudolph, E.-M. Peters and K. Peters, Eur. J. Org. Chem., 1999, 2093 CrossRef CAS.
  4. M. Christl and M. Braun, Liebigs Ann./Recl., 1997, 1135 Search PubMed.
  5. R. Huisgen, P. H. J. Ooms, M. Mingin and N. L. Allinger, J. Am. Chem. Soc., 1980, 102, 3951 CrossRef CAS.
  6. N. G. Rondan, M. N. Paddon-Row, P. Caramella, J. Mareda, P. H. Mueller and K. N. Houk, J. Am. Chem. Soc., 1982, 104, 4974 CrossRef CAS.
  7. (a) D. Rehm and A. Weller, Israel J. Chem., 1970, 8, 259 Search PubMed; (b) A. Weller, Z. Phys. Chem. (Wiesbaden), 1982, 133, 93 Search PubMed.
  8. I. Carmichael and G. L. Hug, in Handbook of Organic Photochemistry, ed. J. C. Scaiano, CRC Press, Boca Raton, 1989, vol. I, p. 369 Search PubMed.
  9. M. E. Peover, J. Chem. Soc., 1962, 4540 RSC.
  10. P. G. Gassman, R. Yamaguchi and G. F. Koser, J. Org. Chem., 1978, 43, 4392 CrossRef CAS.
  11. T. Shono, A. Ikeda, J. Hayashi and S. Hakozaki, J. Am. Chem. Soc., 1975, 97, 4261 CrossRef CAS.
  12. J.-H. Xu, Y.-L. Song, Z.-G. Zhang, L.-C. Wang and J.-W. Xu, Tetrahedron, 1994, 50, 1199 CrossRef CAS.
  13. D. Bryce-Smith and A. Gilbert, Tetrahedron Lett., 1964, 3471 CrossRef CAS.
  14. M. Christl and M. Braun, Angew. Chem., 1989, 101, 636 (Angew. Chem., Int. Ed. Engl., 1989, 28, 601) CAS.
  15. M. Braun Dissertation, Universität Würzburg, 1990.
  16. Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie, 101st edn., Walter de Gruyter, Berlin, 1995, p. 1842 Search PubMed.
  17. R. Herbert and M. Christl, Chem. Ber., 1979, 112, 2012 CAS; M. Christl and R. Herbert, Chem. Ber., 1979, 112, 2022 CAS; M. Christl and H. Reuchlein, Angew. Chem., 1990, 102, 1090 (Angew. Chem., Int. Ed. Engl., 1990, 29, 1035) CAS; H. Reuchlein, A. Kraft, M. Christl, E.-M. Peters, K. Peters and H. G. von Schnering, Chem. Ber., 1991, 124, 1435 CAS.
  18. R. L. Cook and T. B. Malloy, Jr., J. Am. Chem. Soc., 1974, 96, 1703 CrossRef CAS; U. Kunz, S. Krimm, T. Fischer, T. Kottke, D. Stalke and M. Christl, Eur. J. Org. Chem., 1998, 2171 CrossRef CAS.
  19. S. M. Hubig, T. M. Bockman and J. K. Kochi, J. Am. Chem. Soc., 1997, 119, 2926 CrossRef CAS.
  20. G. Jones, II and W. A. Haney, J. Phys. Chem., 1986, 90, 5410 CrossRef.
  21. J. A. Barltrop and B. Hesp, J. Chem. Soc., 1967,(C), 1625 Search PubMed This value was estimated from the first vertical ionisation potential (IP), which was determined to be 8.79 eV by photoelectron spectroscopy.
  22. This value was estimated from the first vertical ionisation potential (IP), which was determined to be 8.79 eV by photoelectron spectroscopy (R. Gleiter, P. Bischof, K. Gubernator, M. Christl, L. SchwagerP. Vogel, J. Org. Chem., 1985, 50, 5064), by extrapolation of the correlation defined by the quantities of cyclopentene (IP, 9.18 eV; P. Bischof, E. Heilbronner, Helv. Chim. Acta, 1970, 53, 1677) and norbornene (IP, 8.97 eV; P. Bischof, J. A. Hashmall, E. HeilbronnerV. Hornung, Helv. Chim. Acta, 1969, 52, 1745 Search PubMed.
  23. R. D. Miller and D. L. Dolce, Tetrahedron Lett., 1975, 1831 CrossRef CAS; R. D. Miller and W. Theis, Tetrahedron Lett., 1986, 27, 2447 CrossRef CAS; R. D. Miller, W. Theis, G. Heilig and S. Kirchmeyer, J. Org. Chem., 1991, 56, 1453 CrossRef CAS.
  24. S. S. Kim, D. Y. Yoo, I. H. Cho and S. C. Shim, Bull. Korean Chem. Soc., 1987, 8, 296 CAS.
  25. Handbook of Tables for Organic Compound Identification, 3rd edn., CRC Press, Cleveland, 1967, p. 126 Search PubMed.
  26. K. Bast, M. Christl, R. Huisgen and W. Mack, Chem. Ber., 1973, 106, 3312.
  27. T. Tsuji, Y. Hienuki, M. Miyake and S. Nishida, J. Chem. Soc., Chem. Commun., 1985, 471 RSC; M. Miyake, T. Tsuji, A. Furusaki and S. Nishida, Chem. Lett., 1988, 47 CAS.
  28. J. Meinwald and F. Uno, J. Am. Chem. Soc., 1968, 90, 800 CrossRef CAS; W. Trautmann, Dissertation, Universität Karlsruhe, 1976.
Click here to see how this site uses Cookies. View our privacy policy here.