Novel rearrangement of conformationally restrained [3.3]orthocyclophanes

(Note: The full text of this document is currently only available in the PDF Version )

Shin-ichiro Isobe, Masahiko Taniguchi, Tsuyoshi Sawada, Thies Thiemann, Tadashi Yonemitsu and Shuntaro Mataka


Abstract

Novel rearrangement of intermediate carbocations generated from rigid, layered [3.3]orthocyclophane-alcohols 4 are presented. The bicyclo[4.4.1]undecane framework of 4 rearranges to either bicyclo[5.4.0]- 5 and/or bicyclo[4.4.0]- 6 or tricyclo[5.4.0.02,11]- ring-system 11, depending upon the nature of the aryl substituent on the bridging tertiary carbon atom. X-Ray crystal structure analyses have been performed on the rearrangement products.


References

  1. (a) S. Mataka, K. Takahashi, T. Hirota, K. Takuma, H. Kobayashi and M. Tashiro, J. Chem. Soc., Chem. Commun., 1985, 973 RSC; (b) S. Mataka, K. Takahashi, T. Mimura, T. Hirota, K. Takuma, H. Kobayashi, M. Tashiro, K. Imada and M. Kuniyoshi, J. Org. Chem., 1987, 52, 2653 CrossRef CAS; (c) For more recent communications, see: S. Mataka, Y. Mitoma, T. Sawada and M. Tashiro, Tetrahedron Lett., 1996, 37, 65 Search PubMed; (d) S. Mataka, Y. Mitoma, T. Thiemann, T. Sawada, M. Taniguchi, M. Kobuchi and M. Tashiro, Tetrahedron, 1997, 53, 3015 CrossRef CAS.
  2. For related rigid, layered orthocyclophanes, see: (a) S. J. Cristol and D. C. Lewis, J. Am. Chem. Soc., 1967, 89, 1467; (b) H. Prinzbach, G. Sedelmeier, C. Krüger, R. Goddard, H.-D. Martin and R. Gleiter, Angew. Chem., 1978, 90, 297 (Angew. Chem., Int. Ed. Engl., 1978, 17, 271) CAS; (c) W. Grimme, H. T. Kämmerling, J. Lex, R. Gleiter, J. Heinze and M. Dietrich, Angew. Chem., 1991, 103, 215 (Angew. Chem., Int. Ed. Engl., 1991, 30, 205) CAS.
  3. (a) S. Mataka, K. Shigaki, T. Sawada, Y. Mitoma, M. Taniguchi, T. Thiemann, K. Ohga and N. Egashira, Angew. Chem., 1998, 110, 2626 (Angew. Chem., Int. Ed. Engl., 1998, 37, 2532) CrossRef; (b) M. Taniguchi, S. Mataka, T. Thiemann, T. Sawada, K. Mimura and Y. Mitoma, Bull. Chem. Soc. Jpn., 1998, 71, 2661 CAS; (c) S. Mataka, J. Ma, T. Thiemann, J. M. Rudziñski, H. Tsuzuki, T. Sawada and M. Tashiro, Tetrahedron, 1997, 53, 885 CrossRef CAS.
  4. S. Mataka, Y. Mitoma, T. Sawada, T. Thiemann, M. Taniguchi and M. Tashiro, Tetrahedron, 1998, 54, 5171 CrossRef CAS.
  5. PM3 method as implemented in CAChe (Version 3.7) was used.
  6. The generation of the cations has been tried using Magic Acid at –78°C with 13C monitoring. However, it may well be that the cations produced under these conditions do not exhibit the same conformation as those reported here, possibly due to the different dipole moment of the solvent and lack of free rotation of substituent R: S. Prakash, M. Hachomy, S. Mataka and S. Isobe, unpublished results.
  7. JC–H Coupling constants of the benzylic CH2 in the starting material, however, are similar to those found in ethylbenzene.
  8. M. Brock, H. Hintze and A. Heesing, Chem. Ber., 1986, 119, 3718 CAS.
  9. A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Crystallogr., 1994, 27, 435 CrossRef.
  10. MolEN, An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, The Netherlands, 1990.
  11. G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.
  12. G. M. Sheldrick, SHELXL-93, University of Göttingen, Germany, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.