Asymmetric synthesis of 1-phenylpropanol using polymer-supported chiral catalysts in simple bench-top flow systems[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Philip Hodge, David W. L. Sung and Peter W. Stratford


Abstract

Reactions of aldehydes with diethylzinc catalysed by PS ephedrine or PS camphor derivatives in bench-top flow systems have been investigated. This type of reaction system allows the PS chiral catalysts to be conveniently used for extended periods. When the PS camphor derivative 3 was used in a flow system to catalyse the reaction of benzaldehyde with diethylzinc [Reaction (1)], 1-phenylpropanol 1 was initially obtained in a chemical yield of >[hair space]95% and an ee of >[hair space]94%, but after ca. 275 h in use the chemical yields had dropped to 50–60% and the ee to 81–84%. The deterioration in performance appears to be due to the gradual chemical degradation of the catalyst sites. It is suggested that this results from oxidation of the 3-exo-hydroxy group of the catalyst moiety. Thus, when, in future, PS catalysts are to be repeatedly recycled then it will not only be necessary to use a physically robust polymer, but it will also be necessary to select catalytic groups which do not chemically degrade significantly during the extended reaction periods. High % ee could be obtained in certain flow systems. Thus, under optimum conditions the use of both PS ephedrine and PS camphor derivatives as catalysts for Reaction (1) gave 1-phenylpropanol 1 in 97–99% ee. The result with the PS ephedrine derivative is surprising because when (1R,2S[hair space])-N-benzylephedrine 5 is used in batch systems under typical reaction conditions it affords (R)-alcohol 1 in only ca. 81% ee. The increase in the ee probably arises because the flow system produces the effect of a high mol% of catalyst and/or of diethylzinc and/or because the initial alkoxide reaction product, which acts as a catalyst and gives product with a very low % ee, is continuously removed from the reaction system. This result indicates that catalyst species can be formed from the PS ephedrine derivatives and from (1R,2S[hair space])-N-benzylephedrine 5 which produce very high enantioselectivities but which are not normally present in sufficient amounts to dominate the reaction system.


References

  1. R. B. Merrifield, J. Am. Chem. Soc., 1963, 85, 2149 CrossRef CAS.
  2. Polymer-supported Reactions in Organic Synthesis, ed. P. Hodge and D. C. Sherrington, John Wiley, Chichester, 1980 Search PubMed.
  3. Polymeric Reagents and Catalysts, ed. W. T. Ford, ACS Symposium Series 308, Washington, 1986 Search PubMed.
  4. Syntheses and Separations Using Functional Polymers, ed. D. C. Sherrington and P. Hodge, John Wiley, Chichester, 1988 Search PubMed.
  5. A. Akelah and A. Moet, Functionalised Polymers and Their Applications, Chapman and Hall, London, 1990 Search PubMed.
  6. A. Akelah and D. C. Sherrington, Chem. Rev., 1981, 81, 557 CrossRef CAS.
  7. A. Akelah and D. C. Sherrington, Polymer, 1983, 24, 1369 CrossRef CAS.
  8. P. Hodge, Annu. Rep. Prog. Chem., Sect. B, Org. Chem., 1986, 83, 283–302 RSC.
  9. P. Hodge, Chem. Soc. Rev., 1997, 26, 417 RSC.
  10. P. Hodge, in Innovation and Perspectives in Solid Phase Synthesis, ed. R. Epton, SPCC (UK) Ltd., Birmingham, 1990, pp. 273–292 Search PubMed.
  11. S. Itsuno and J. M. J. Frechet, J. Org. Chem., 1987, 52, 4140 CrossRef CAS.
  12. K. Soai, S. Niwa and M. Watanabe, J. Org. Chem., 1988, 53, 927 CrossRef CAS.
  13. K. Soai, S. Niwa and M. Watanabe, J. Chem. Soc., Perkin Trans. 1, 1989, 109 RSC.
  14. K. Soai and M. Watanabe, J. Chem. Soc., Chem. Commun., 1990, 43 RSC.
  15. S. Itsuno, Y. Sakurai, K. Ito, T. Maruyama, S. Nakahama and J. M. J. Frechet, J. Org. Chem., 1990, 55, 304 CrossRef CAS.
  16. M. Watanabe, S. Araki, Y. Butsugan and M. Uemura, Chem. Express, 1990, 5, 761 Search PubMed.
  17. Z. Zhang, P. Hodge and P. W. Stratford, React. Polym., 1991, 15, 71 Search PubMed.
  18. U. Kragl and C. Dreisbach, Angew. Chem., Int. Ed. Engl., 1996, 35, 642 CrossRef CAS.
  19. M. Watanabe and K. Soai, J. Chem. Soc., Perkin Trans. 1, 1994, 837 RSC.
  20. D. Seebach, R. E. Marti and T. Hintermann, Helv. Chim. Acta, 1996, 79, 1710 CrossRef CAS.
  21. D. W. L. Sung, P. Hodge and P. W. Stratford, J. Chem. Soc., Perkin Trans. 1, 1999, 1463 RSC.
  22. K. Soai and S. Niwa, Chem. Rev., 1992, 92, 833 CrossRef CAS.
  23. D. J. Gravert and D. K. Janda, Chem. Rev., 1997, 97, 489 CrossRef CAS.
  24. A. Dryland and R. C. Sheppard, J. Chem. Soc., Perkin Trans. 1, 1986, 125 RSC.
  25. E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford, 1989, ch. 8, pp. 87–105 Search PubMed.
  26. C. R. Harrison and P. Hodge, J. Chem. Soc., Perkin Trans. 1, 1976, 2252 RSC.
  27. C. R. Harrison and P. Hodge, J. Chem. Soc., Perkin Trans. 1, 1982, 509 RSC.
  28. V. Ragaini and G. Saed, Z. Phys. Chem. (Munich), 1980, 119, 117 CAS.
  29. V. Ragaini, G. Verzella, A. Ghignone and G. Colombo, Ind. Eng. Chem. Process Des. Dev., 1986, 25, 878 Search PubMed.
  30. J. P. C. Bootsma, G. Challa and F. Müller, Polym. Commun., 1984, 25, 342 Search PubMed.
  31. S. Itsuno, I. Ito, T. Maruyama and M. Kanda, Bull. Chem. Soc. Jpn., 1986, 59, 3329 CAS.
  32. R. A. Houghten, Proc. Natl. Acad. Sci. USA, 1985, 82, 5131 CAS.
  33. P. J. Comina, A. K. Beck and D. Seebach, Org. Process Res. Dev., 1998, 2, 18 Search PubMed.
  34. C. Driesbach, G. Wischnewski, U. Kragl and C. Wandrey, J. Chem. Soc., Perkin Trans. 1, 1995, 875 RSC.
  35. P. Tundo, Continuous Flow Methods in Organic Synthesis, Ellis Horwood, New York, 1991 Search PubMed.
  36. P. A. Chaloner and E. Langadianou, Tetrahedron Lett., 1990, 30, 5185 CrossRef CAS.
  37. K. Soai, A. Ookawa, T. Kaba and K. Ogawa, J. Am. Chem. Soc., 1987, 109, 7111 CrossRef CAS.
  38. See ref. 2, p. 469 for a diagram and photograph of the polymerisation vessel.
  39. R. H. Pickard and J. Kenyon, J. Chem. Soc., 1914, 1115 Search PubMed.
  40. R. Noyori, S. Suga, K. Kawai, S. Okada, M. Kitamura, N. Ogumi, M. Hayashi, T. Kaneko and Y. Matsuda, J. Organomet. Chem., 1990, 382, 19 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.