The change in the electronic character upon cisplatin binding to guanine nucleotide is transmitted to drive the conformation of the local sugar-phosphate backbone—a quantitative study

(Note: The full text of this document is currently only available in the PDF Version )

Matjaž Polak, Janez Plavec, Anna Trifonova, Andras Földesi and Jyoti Chattopadhyaya


Abstract

The microstructure alteration as a result of cisplatin binding to N7 of guanines in DNA has been herein assessed through the multinuclear temperature-, pH*- and concentration-dependent NMR study of the effect of Pt2+ complexation to 2′-deoxyguanosine 3′,5′-bis(ethyl hydrogen phosphate) 1 and its ribo analogue 3 which mimic the central nucleotide moiety in a trinucleoside diphosphate in the complete absence of intramolecular base–base stacking interactions. The N  S pseudorotational equilibrium shifts towards N-type conformers by 17 and 21 percentage points at 298 K, respectively, thereby showing that free energy of platination is transmitted to drive the sugar conformation. The increase in the population of N-type conformers was rationalized with the strengthening of the anomeric effect in both 2′-deoxy and ribo nucleotides upon the formation of the Pt–N7 bond which promotes nO4′ → σ*C1′-N9 orbital interactions due to the reduction of π-electron density in the imidazole part of guanine. The additional stabilization of N-type conformers in Pt2+ complexes of ribonucleotides is due to the tuning of the gauche effect of the [N9–C1′–C2′–O2′] fragment, which is absent in 2′–deoxy-ribo counterparts. The platination of N7 favours N1 deprotonation in 2 and 4 by ΔpKa of 0.7 and 0.9 units in comparison with parent nucleotides 1 and 3, respectively. The N  S pseudorotational equilibrium in 1–4 showed classical sigmoidal dependence as a function of pH with pKa-values at the inflection points. The population of S-type conformers has increased upon N1 deprotonation in 1–4 because the anomeric effect weakened due to the increased π-electron density in the imidazole part of the guanine moiety. The formation of the Pt–N7 bond in bifunctional complexes 2 and 4 simultaneously causes a shift of the syn  anti equilibrium towards anti by 43 and 63 percentage points, and the increase in the population of εt,N conformers by 20 and 32 percentage points at 278 K, respectively. Only a minor conformational redistribution along β, γ, β+1 and ε–1 torsion angles has been observed, which suggests their weak conformational cooperativity with the N[hair space][hair space] S pseudorotational equilibrium as a result of platination to guanine. In comparison with nucleotide phosphodiesters, apurinic 3′,5′-bis(ethyl hydrogen phosphate) sugars 5 and 6 showed no interaction with Pt2+ and therefore no conformational changes.


References

  1. M. J. Bloemink and J. Reedijk, in Metal Ions in Biological Systems, ed. A. Sigel and H. Sigel, Marcel Dekker Inc., New York, 1996, vol. 32, pp. 641–685 Search PubMed.
  2. D. Kiser, F. P. Intini, Y. Xu, G. Natile and L. G. Marzilli, Inorg. Chem., 1994, 33, 4149 CrossRef CAS.
  3. S. K. Miller and L. G. Marzilli, Inorg. Chem., 1985, 24, 2421 CrossRef CAS.
  4. S. O. Ano, F. P. Intini, G. Natile and L. G. Marzilli, J. Am. Chem. Soc., 1998, 120, 12017 CrossRef CAS.
  5. S. O. Ano, F. P. Intini, G. Natile and L. G. Marzilli, J. Am. Chem. Soc., 1997, 119, 8570 CrossRef CAS.
  6. Z. J. Guo, Y. Chen, E. Zang and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1997, 4107 RSC.
  7. J. M. Teuben, S. S. G. E. van Boom and J. Reedijk, J. Chem. Soc., Dalton Trans., 1997, 3979 RSC.
  8. M. J. Bloemink, E. L. M. Lempers and J. Reedijk, Inorg. Chim. Acta, 1990, 176, 317 CrossRef CAS.
  9. F. J. Dijt, G. W. Canters, J. H. J. den Hartog, A. T. M. Marcelis and J. Reedijk, J. Am. Chem. Soc., 1984, 106, 3644 CrossRef CAS.
  10. B. Song, G. Oswald, J. Zhao, B. Lippert and H. Sigel, Inorg. Chem., 1998, 37, 4857 CrossRef CAS.
  11. H. Sigel, B. Song, G. Oswald and B. Lippert, Chem. Eur. J., 1998, 4, 1053 CrossRef CAS.
  12. H. P. M. de Leeuw, C. A. G. Haasnoot and C. Altona, Isr. J. Chem., 1980, 20, 108 CAS.
  13. C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1972, 94, 8205 CrossRef CAS.
  14. C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1973, 95, 2333 CrossRef CAS.
  15. J. Plavec, W. Tong and J. Chattopadhyaya, J. Am. Chem. Soc., 1993, 115, 9734 CrossRef CAS.
  16. J. Plavec, C. Thibaudeau and J. Chattopadhyaya, Pure Appl. Chem., 1996, 68, 2137 CAS.
  17. C. Thibaudeau, J. Plavec and J. Chattopadhyaya, J. Org. Chem., 1996, 61, 266 CrossRef CAS.
  18. M. Polak and J. Plavec, Nucleosides, Nucleotides, 1998, 17, 2011 CAS.
  19. M. Polak and J. Plavec, Eur. J. Inorg. Chem., 1999, 547 CrossRef CAS.
  20. H. Huang, L. Zhu, B. R. Reid, G. P. Drobny and P. B. Hopkins, Science, 1995, 270, 1842 CAS.
  21. J. Arpalahti, M. Mikola and S. Mauristo, Inorg. Chem., 1993, 32, 3327 CrossRef CAS.
  22. M. Mikola, K. D. Klika, A. Hakala and J. Arpalahti, Inorg. Chem., 1999, 38, 571 CrossRef CAS.
  23. M. D. Reily and L. G. Marzilli, J. Am. Chem. Soc., 1986, 108, 8299 CrossRef CAS.
  24. J. Kozelka and G. Barre, Chem. Eur. J., 1997, 3, 1405 CrossRef CAS.
  25. R. B. Martin, Chem. Rev., 1996, 96, 3043 CrossRef CAS.
  26. F. A. A. M. de Leeuw and C. Altona, J. Comput. Chem., 1983, 4, 428 CrossRef.
  27. C. Haasnoot, F. A. A. M. de Leeuw, D. Huckriede, J. van Wijk and C. Altona, PSEUROT – A program for the conformational analysis of five membered rings, Leiden, Netherlands, 1993.
  28. H. Rosemeyer, G. Toth, B. Golankiewicz, Z. Kazimierczuk, W. Bourgeois, U. Kretschmer, H.-P. Muth and F. Seela, J. Org. Chem., 1990, 55, 5784 CrossRef CAS.
  29. P. P. Lankhorst, C. A. G. Haasnoot, C. Erkelens and C. Altona, J. Biomol. Struct. Dyn., 1984, 1, 1387 Search PubMed.
  30. M. M. W. Mooren, S. S. Wijmenga, G. A. van der Marel, J. H. van Boom and C. W. Hilbers, Nucleic Acids Res., 1994, 22, 2658 CAS.
  31. J. Plavec and J. Chattopadhyaya, Tetrahedron Lett., 1995, 36, 1949 CrossRef CAS.
  32. C. A. G. Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw and C. Altona, Recl. Trav. Chim. Pays-Bas, 1979, 98, 576 CAS.
  33. J. Plavec, C. Thibaudeau, G. Viswanadham, A. Sandström and J. Chattopadhyaya, Tetrahedron, 1995, 51, 11775 CrossRef CAS.
  34. P. P. Lankhorst, C. A. G. Haasnoot, C. Erkelens, H. P. Westerink, G. A. van der Marel, J. H. van Boom and C. Altona, Nucleic Acids Res., 1985, 13, 927 CAS.
  35. M. J. J. Blommers, D. Nanz and O. Zerbe, J. Biomol. NMR, 1994, 4, 595 CAS.
  36. A. Gelasco and S. J. Lippard, Biochemistry, 1998, 37, 9230 CrossRef CAS.
  37. G. S. Ti, B. L. Gaffney and R. A. Jones, J. Am. Chem. Soc., 1982, 104, 1316 CrossRef CAS.
  38. A. Sandström, M. Kwiatkowski and J. Chattopadhyaya, Acta Chem. Scand., Sect. B, 1985, 39, 273 Search PubMed.
  39. C. Sund, P. Agback, L. H. Koole, A. Sandström and J. Chattopadhyaya, Tetrahedron, 1992, 48, 695 CrossRef CAS.
  40. W. T. Markiewicz, J. Chem. Res. (S), 1979, 24 Search PubMed.
  41. B. E. Grin, M. Jarman and C. B. Reese, Tetrahedron, 1968, 24, 639 CrossRef CAS.
  42. M. J. Robins, J. S. Wilson and F. Hansske, J. Am. Chem. Soc., 1983, 105, 4059 CrossRef CAS.
  43. M. A. Morgan, S. A. Kazakov and S. M. Hecht, Nucleic Acids Res., 1995, 23, 3949 CrossRef CAS.
  44. C. Altona, R. Francke, R. de Haan, J. H. Ippel, G. J. Daalmans, A. J. A. Westra Hoekzema and J. van Wijk, Magn. Reson. Chem., 1994, 32, 670 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.