Stereoselective benzylic hydroxylation of 2-substituted indanes using toluene dioxygenase as biocatalyst

(Note: The full text of this document is currently only available in the PDF Version )

Nigel I. Bowers, Derek R. Boyd, Narain D. Sharma, Peter A. Goodrich, Melanie R. Groocock, A. John Blacker, Paul Goode and Howard Dalton


Abstract

Indane, 1A, and a series of 2-substituted indane substrates, 1B–1D, 1G, 1I–1L, were found to undergo benzylic monohydroxylation catalysed by toluene dioxygenase, present in the intact cells of Pseudomonas putida UV 4, to yield enantiopure cis-indan-1-ols, 2A–2D, 2G, 2I–2L of the same absolute configuration at C-1 as major bioproducts. Enantiopure trans-indan-1-ols 6B, 6C, and 6G were also obtained as minor metabolites. Evidence of further sequential benzylic hydroxylation (bis-hydroxylation) was found only with substrates 2A, 1C, 1D and 1L to yield the corresponding enantiopure trans-1,3-diols, 3A, 3C, 3D and 3L. Minor enzyme-catalysed processes also observed include benzylic alcohol oxidation to ketones (4A, 5A, 4B, 4L, 5L), ketone reduction to benzylic alcohol 6A, ester hydrolysis to indan-2-ol 1B, and cis-dihydroxylation of indan-1-ol 6A to triol 7. The enantiopurities and absolute configurations of bioproducts have been determined using MTPA ester formation, circular dichroism spectroscopy and stereochemical correlation methods.

The contribution of asymmetric oxidation and kinetic resolution to the production of bioproducts of high ee (>98%), and the metabolic sequence involved in their biotransformation by P. putida UV4 is discussed. Enantiocomplementarity was found during the benzylic hydroxylation of indan-2-ol 1B, using toluene dioxygenase and naphthalene dioxygenase, when both single enantiomers of the metabolites 2B, 4B and 6B of opposite configurations were obtained.


References

  1. A. L. Lehinger, D. L. Nelson and M. M. Cox, in Principles of Biochemistry, Worth Publishers, New York, 1997 Search PubMed.
  2. D. T. Gibson, G. J. Zylstra and S. Chauhan, in Pseudomonas: Biotransformations, Partenogenesis and Evolving Biochemistry, ed. S. Silver, A. M. Charkaberthy, B. Iglewski and S. Kaplan, American Society for Microbiology, 1990, ch. 13, p. 121 Search PubMed.
  3. S. M. Renwick, K. Lee and D. T. Gibson, J. Ind. Microbiol., 1996, 17, 438 Search PubMed.
  4. D. R. Boyd and G. N. Sheldrake, Nat. Prod. Rep., 1998, 15, 309 RSC.
  5. D. R. Boyd, N. D. Sharma, P. J. Stevenson, J. Chima, D. J. Gray and H. Dalton, Tetrahedron Lett., 1991, 32, 3887 CrossRef CAS.
  6. D. R. Boyd, N. D. Sharma, N. I. Bowers, P. A. Goodrich, M. R. Groocock, A. J. Blacker, D. A. Clarke, T. Howard and H. Dalton, Tetrahedron: Asymmetry, 1996, 7, 1559 CrossRef CAS.
  7. C. F. Huebner, E. M. Donaghue, C. J. Novak, L. Dorfman and E. Wenkert, J. Org. Chem., 1970, 35, 1149 CrossRef CAS.
  8. D. R. Boyd, N. D. Sharma and A. E. Smith, J. Chem. Soc., Perkin Trans. 1, 1982, 2767 RSC.
  9. P. A. Marshall and R. H. Prager, Aust. J. Chem., 1975, 32, 1251.
  10. A. Mitrochikine, G. Gil and M. Reglier, Tetrahedron: Asymmetry, 1995, 6, 1535 CrossRef.
  11. G. Jaouen and A. Meyer, J. Am. Chem. Soc., 1975, 97, 4667 CrossRef CAS.
  12. J. R. Cashman, L. D. Olsen, D. R. Boyd, R. A. S. McMordie, R. Dunlop and H. Dalton, J. Am. Chem. Soc., 1992, 114, 8772 CrossRef.
  13. C. C. R. Allen, D. R. Boyd, H. Dalton, N. D. Sharma, S. A. Haughey, R. A. S. McMordie, B. T. McMurray, K. Sproule and G. N. Sheldrake, J. Chem. Soc., Chem. Commun., 1995, 119 RSC.
  14. D. R. Boyd, N. D. Sharma, S. A. Haughey, M. A. Kennedy, B. T. McMurray, G. N. Sheldrake, C. C. R. Allen, H. Dalton and K. Sproule, J. Chem. Soc., Perkin Trans 1, 1998, 1929 RSC.
  15. L. P. Wackett, L. D. Kwart and D. T. Gibson, Biochemistry, 1988, 27, 1360 CrossRef CAS.
  16. J. M. Brand, D. L. Cruden, G. J. Zylstra and D. T. Gibson, Appl. Environ. Microbiol., 1992, 58, 3407 CAS.
  17. D. R. Boyd, N. D. Sharma, M. Groocock, J. F. Malone and H. Dalton, J. Chem. Soc., Perkin Trans. 1, 1997, 1897 Search PubMed.
  18. H. Fu, M. Newcombe and C. H. Wong, J. Am. Chem. Soc., 1991, 113, 7767 CrossRef.
  19. D. Burdi and T. P. Begley, J. Am. Chem. Soc., 1991, 113, 7768 CrossRef CAS.
  20. D. R. Boyd, N. D. Sharma, S. A. Haughey, M. A. Kennedy, B. T. McMurray, G. N. Sheldrake, C. C. R. Allen, H. Dalton and K. Sproule, J. Chem. Soc., Perkin Trans. 1, 1998, 1929 RSC.
  21. K. Lee, J. M. Brand and D. T. Gibson, Biochem. Biophys. Res. Commun., 1995, 212, 9 CrossRef CAS.
  22. C. H. Senanayke, F. E. Roberts, L. M. Dimichele, K. M. Ryan, L. E. Fredenburgh, B. S. Foster, A. W. Douglas, R. D. Larsen, T. R. Verhoeven and P. J. Reider, Tetrahedron Lett., 1995, 36, 3993 CrossRef.
  23. H. Bodert, J. Jullian and E. Leblanc, Bull. Soc. Chim. Fr., 1962, 41.
  24. T. H. Porter and W. Shive, J. Med. Chem., 1968, 2, 402 CrossRef.
  25. F. M. Menger, J. F. Chow and P. C. Vasquez, J. Am. Chem. Soc., 1983, 105, 4996 CrossRef CAS.
  26. D. E. F. Gracey, W. R. Jackson, C. H. McMullan and N. Thompson, J. Chem. Soc. (B), 1969, 1197 RSC.
  27. H. Banks and H. Ziffer, J. Org. Chem., 1982, 47, 3743 CrossRef CAS.
  28. P. Ruzicka, Helv. Chim. Acta, 1935, 18, 676 CrossRef.
  29. D. S. Watt and D. M. Netegel, J. Org. Chem., 1984, 49, 4226 CrossRef CAS.
  30. Y. Oda and M. Yuasa, Jap P 228586/1996 (Chem. Abstr., 1996, 124, 145646) Search PubMed.
  31. D. R. Boyd, R. A. S. McMordie, N. D. Sharma, H. Dalton, P. Williams and R. O. Jenkins, J. Chem. Soc., Chem. Commun., 1989, 339 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.