Structure–function studies on nucleoside antibiotic mureidomycin A: synthesis of 5′-functionalised uridine models

(Note: The full text of this document is currently only available in the PDF Version )

Caragh A Gentle, Stephen A. Harrison, Masatoshi Inukai and Timothy D. H. Bugg


Abstract

The importance of functional groups in nucleoside antibiotic mureidomycin A (MRD A) for biological activity has been examined by derivatisation of samples of the natural product, and by synthesis of uridine-containing analogues. N-Succinyl and di- and tri-acetyl derivatives MRD A have been prepared, and were found to have reduced activity as inhibitors of E. coli translocase I. The enamide alkene of MRD A was found to be extremely resistant towards hydrogenation by a variety of reagents. Several 5′-functionalised uridine derivatives were synthesised from N[hair space] 3-p-methoxybenzyl-2′,3′-isopropylideneuridine. A series of 5′-aminoacyl derivatives were prepared, and the 3-aminopropionyl (IC50 260 µM) and 7-aminoheptanoyl (IC50 1.5 mM) derivatives were found to act as reversible inhibitors. An analogue mimicking the carboxy terminus of MRD A was synthesised, and also acted as an inhibitor of translocase I (IC50 1.9 mM). A phosphonate analogue designed as a possible suicide inhibitor showed modest inhibition (IC50 3.7 mM), which was shown to be irreversible.


References

  1. T. D. H. Bugg and C. T. Walsh, Nat. Prod. Rep., 1992, 9, 199 RSC.
  2. M. Michel and L. Gutmann, Lancet, 1997, 349, 1901 CrossRef CAS.
  3. P. E. Brandish, M. K. Burnham, J. T. Lonsdale, R. Southgate, M. Inukai and T. D. H. Bugg, J. Biol. Chem., 1996, 271, 7609 CrossRef CAS.
  4. M. Ikeda, M. Wachi, H. K. Jung, F. Ishino and M. Matsuhashi, J. Bacteriol., 1991, 173, 1021 CAS.
  5. F. Isono, M. Inukai, S. Takahashi, T. Haneishi, T. Kinoshita and H. Kuwano, J. Antibiot., 1989, 42, 667 CAS.
  6. R. H. Chen, A. M. Buko, D. N. Whittern and J. B. McAlpine, J. Antibiot., 1989, 42, 512 CAS.
  7. S. Chatterjee, S. R. Nadkarni, E. K. S. Vijayakumar, M. V. Patel, B. N. Ganguli, H. W. Fehlhaber and L. Vertesy, J. Antibiot., 1994, 47, 595 CAS.
  8. C. A. Gentle and T. D. H. Bugg, previous paper.
  9. E. Eisenstein and H. K. Schachman, in Protein Function: A Practical Approach, ed. T. E. Creighton, IRL Press, Oxford, 1990, pp. 140–142 Search PubMed.
  10. R. F. Borch, M. D. Bernstein and H. D. Hurst, J. Am. Chem. Soc., 1971, 93, 2897 CrossRef CAS.
  11. S. G. Zeller, A. J. D'Ambra, M. J. Rice and G. R. Gray, Carbohydr. Res., 1988, 182, 53 CrossRef CAS.
  12. C. Wanke and N. Amrhein, Eur. J. Biochem., 1993, 218, 861 CAS.
  13. D. J. Hart, W. P. Hong and L. Y. Hsu, J. Org. Chem., 1987, 52, 4665 CrossRef CAS.
  14. S. J. Danishefsky, S. L. DeNinno, S. Chen, L. Boisvert and M. Barbachyn, J. Am. Chem. Soc., 1989, 111, 5810 CrossRef CAS.
  15. M. G. Heydanek, W. G. Struve and F. C. Neuhaus, Biochemistry, 1969, 8, 1214 CrossRef CAS.
  16. T. L. Capson, M. D. Thompson, V. M. Dixit, R. G. Gaughan and C. D. Poulter, J. Org. Chem., 1988, 53, 5903 CrossRef CAS.
  17. P. F. Marrero, C. D. Poulter and P. A. Edwards, J. Biol. Chem., 1992, 267, 21873 CAS.
  18. L. C. Tarshis, M. Yan, C. D. Poulter and J. C. Sacchettini, Biochemistry, 1994, 33, 10871 CrossRef CAS.
  19. J. Tomasz, in Nucleic Acid Chemistry, eds. L. B. Townsend and R. S. Tipson, Wiley, New York, 1978, p. 765 Search PubMed.
  20. E. C. Jorgenson, G. C. Windringe and T. C. Lee, J. Med. Chem., 1970, 13, 352; 744 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.