Atropisomeric amides: stereoselective enolate chemistry and enantioselective synthesis via a new SmI2-mediated reduction

(Note: The full text of this document is currently only available in the PDF Version )

Adam D. Hughes, David A. Price and Nigel S. Simpkins


Abstract

The use of certain types of atropisomeric amides, incorporating an N-MEM-ortho-tert-butylaniline group, for stereoselective reactions, has been explored. Enolate reactions of these systems are highly diastereocontrolled, and enantiomerically enriched starting materials can be obtained, starting from lactic acid, via a new SmI2 mediated reduction process.


References

  1. D. P. Curran, H. Qi, S. J. Geib and N. C. DeMello, J. Am. Chem. Soc., 1994, 116, 3131 CrossRef CAS.
  2. A. D. Hughes, D. A. Price, O. Shishkin and N. S. Simpkins, Tetrahedron Lett., 1996, 37, 7607 CrossRef CAS.
  3. O. Kitagawa, H. Izawa, T. Taguchi and M. Shiro, Tetrahedron Lett., 1997, 38, 4447 CrossRef CAS.
  4. O. Kitagawa, H. Izawa, K. Sato, A. Dobashi, T. Taguchi and M. Shiro, J. Org. Chem., 1998, 63, 2634 CrossRef CAS.
  5. A. D. Hughes and N. S. Simpkins, Synlett, 1998, 967 CrossRef CAS.
  6. D. A. Evans, F. Urpi, T. C. Somers, J. S. Clark and M. T. Bilodeau, J. Am. Chem. Soc., 1990, 112, 8215 CrossRef CAS.
  7. D. P. Curran, G. R. Hale, S. J. Geib, A. Balog, Q. B. Cass, A. L. G. Degani, M. Z. Hernandes and L. C. G. Freitas, Tetrahedron: Asymmetry, 1997, 8, 3955 CrossRef CAS.
  8. A. G. Myers, B. H. Yang and D. J. Kopecky, Tetrahedron Lett., 1996, 37, 3623 CrossRef CAS.
  9. M. Bodansky, Principles of Peptide Synthesis, Springer Verlag, New York, 1984, pp. 9–58 Search PubMed.
  10. For reviews, see (a) G. A. Molander, Org. React., 1994, 46, 211 CAS; (b) G. A. Molander and C. R. Harris, in Encyclopedia of Reagents for Organic Synthesis, ed. L. A. Paquette, Wiley, 1995, vol. 6, pp. 4428–4432 Search PubMed; (c) G. A. Molander and C. R. Harris, Chem. Rev., 1996, 96, 307 CrossRef CAS; (d) H. B. Kagan and J. L. Namy, Tetrahedron, 1986, 42, 6573 CrossRef CAS.
  11. For other examples of α-deoxygenation, see (a) T. Naito, N. Kojima, O. Miyata, I. Ninomiya, M. Inoue and M. Doi, J. Chem. Soc., Perkin Trans. 1, 1990, 1271 RSC; (b) N. Hirose, S. Sohda, S. Kuriyama and S. Toyoshima, Chem. Pharm. Bull., 1973, 21, 960 CAS; (c) E. J. Enholm and S. Jiang, Tetrahedron Lett., 1992, 33, 6069 CrossRef CAS; (d) E. J. Enholm and S. Jiang, Tetrahedron Lett., 1992, 33, 5729 CrossRef.
  12. J. R. Fuchs, M. L. Mitchell, M. Shabangi and R. A. Flowers II, Tetrahedron Lett., 1997, 38, 8157 CrossRef CAS.
  13. H. Sacha, D. Waldmuller and M. Braun, Chem. Ber., 1994, 127, 1959 CAS.
  14. D. Seebach, A. R. Sting and M. Hoffmann, Angew. Chem., Int. Ed. Engl., 1996, 35, 2709.
  15. For an example in which an α-oxygenated amide is the product of a SmI2 reaction, see J. H. Rigby, A. Cavezza and M. J. Heeg, J. Am. Chem. Soc., 1998, 120, 3664 Search PubMed.
  16. G. Cahiez and E. Metais, Tetrahedron Lett., 1995, 36, 6449 CrossRef CAS.
  17. K. Kato and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1991, 2948 CAS.
  18. D. H. R. Barton and J. A. Ferreira, Tetrahedron, 1996, 52, 9347 CrossRef CAS.
  19. C. Burnell-Curty and E. J. Roskamp, Tetrahedron Lett., 1993, 34, 5193 CrossRef CAS.
  20. M. Yamada, S. Yahiro, T. Yamano, Y. Nakatani and G. Ourisson, Bull. Soc. Chim. Fr., 1990, 127, 824.
Click here to see how this site uses Cookies. View our privacy policy here.