Novel cascade of seven radical-mediated 6-endo-trig cyclisations leading to a unique all-trans, anti heptacycle

(Note: The full text of this document is currently only available in the PDF Version )

Sandeep Handa and Gerald Pattenden


Abstract

A cascade of seven radical-mediated 6-endo-trig cyclisations from the all-E-heptaene selenoate ester 1 results in the production of the all-trans, anti heptacycle 2 together with the isolation of the all-trans, anti tetracycle 15.


References

  1. See for example (a) L. Chen, G. B. Gill, G. Pattenden and H. Simonian, J. Chem. Soc., Perkin Trans. 1, 1996, 31 RSC Reference 7 below; and extensive bibliography contained in these publications; (b) S. A. Hitchcock, S. J. Houldsworth, G. Pattenden, D. C. Pryde, N. M. Thomson and A. J. Blake, J. Chem. Soc., Perkin Trans. 1, 1998, 3181 RSC; (c) G. J. Hollingworth, G. Pattenden and D. J. Schulz, Aust. J. Chem., 1995, 48, 381 CAS; (d) S. Handa and G. Pattenden, Chem. Com-mun., 1998, 311 Search PubMed; S. Handa and G. Pattenden, Contemp. Org. Synth., 1997, 4, 196 RSC.
  2. For a similar strategy for the synthesis of the octaprenol 3c see: (a) K. Sato, S. Inoue, A. Onishi, N. Uchida and N. Minowa, J. Chem. Soc., Perkin Trans. 1, 1981, 761 RSC; (b) E. E. van Tamelen and S. A. Marson, Bioorg. Chem., 1982, 11, 219 CAS.
  3. All new compounds displayed satisfactory spectroscopic data together with microanalytical and/or mass spectrometric data.
  4. Typical procedure: A solution of tributyltin hydride (8 µl, 8.7 mg, 29.8 µmol) and AIBN (1 mg) in benzene (2 ml) was added dropwise over 8 h to a refluxing solution of the phenyl selenoate 1(16.9 mg, 23.9 µmol) and AIBN (0.5 mg) in dry degassed benzene (6 ml). The mixture was heated under reflux for a further 3 h, then cooled and evaporated to dryness in vacuo. The residue was purified by chromatography on silica gel using diethyl ether–light petroleum (bp 40–60 °C) as eluent and gave the heptacycle 2(2.3 mg, 17%) as colourless crystals, mp 269–271 °C (ethyl acetate–pentane); νmax(CHCl3)/cm–1 3626, 2928, 2853, 1700, 1465, 1387, 1260, 1110 and 1010; δH(500 MHZ; CDCl3) 3.85 (1H, dd, J 4.3 and 10.4 HZ, CHHOH), 3.59 (1H, app. t, J 10.4 HZ, CHHOCH), 2.31–2.27 (2H, m), 2.14–0.74 (complex series of multiplets), 0.95 (3H, d, J 7.6 HZ, CHCH3), 0.85 (3H, s, CH3), 0.84 (3H, s, CH3), 0.81 (6H, s, 2 × CH3), 0.79 (3H, s, CH3) and 0.71 (3H, s, CH3); δC(125.8 MHZ; CDCl3) 213.8 (s), 61.6 (d), 61.5 (d), 61.4 (2 × d), 60.9 (t), 59.7 (d), 59.1 (d), 56.1 (d), 43.4 (s), 42.0 (t), 41.9 (t), 41.8 (t), 41.7 (t), 40.8 (t), 38.7 (t), 38.1 (t), 37.8 (2 × s), 37.7 (s), 37.6 (s), 37.5 (s), 34.5 (t), 28.3 (d), 22.3 (t), 18.2 (t), 18.2 (q), 17.4 (q), 17.3 (q), 17.2 (q), 17.11 (t), 17.07 (2 × t), 17.0 (q), 16.9 (t), 16.2 (t), 15.4 (q) and 13.8 (q); m/z(CI) 533.4704 ((M + H+)– H2O, C38H61O requires 533.4722): and the tetracycle 15(∼25%) as an oil, µmax(CHCl3)/cm–1 2938, 2875, 2852, 1698, 1663, 1451, 1386, 1265 and 1228; δH(500 MHZ; CDCl3) 5.43 (1H, t, J 6.7 HZ, C[double bond, length as m-dash]CHCH2OH), 5.13–5.10 (2H, m, 2 × C[double bond, length as m-dash]CH), 4.16 (2H, d, J 6.7 HZ, CH2OH), 2.27–0.80 (complex series of multiplets), 1.68 (3H, s, C[double bond, length as m-dash]C(CH3)), 1.60 (6H, s, 2 × C[double bond, length as m-dash]C(CH3)), 0.91 (3H, d, J 7.1 HZ, CHCH3), 0.86 (3H, s, CH3), 0.85 (3H, s, CH3), 0.84 (3H, s, CH3); δC(125.8 MHZ; CDCl3) 213.8 (s), 139.8 (s), 135.4 (s), 135.0 (s), 124.2 (d), 123.7 (d), 123.3 (d), 65.8 (t), 61.4 (d), 61.1 (d), 59.7 (d), 51.9 (d), 43.4 (s), 42.0 (t), 41.8 (t), 40.8 (t), 39.7 (t), 39.5 (t), 38.1 (t), 38.0 (t), 37.7 (t), 37.5 (s), 37.4 (s), 30.3 (d), 26.6 (t), 26.3 (t), 22.3 (t), 21.4 (t), 17.3 (2 × q), 17.1 (3 × t), 16.3 (q), 16.0 (q), 15.9 (q), 15.3 (q) and 13.8 (q); m/z(EI) 532.4669 (M+- H2O, C38H60O requires 532.4644).
  5. D. S. de Miranda, G. Brendolan, P. M. Imamura, M. González Sierra, A. J. Marsaioli and E. A. Rúveda, J. Org. Chem., 1981, 46, 4851 CrossRef CAS.
  6. H. Beierbeck, J. K. Saunders and J. W. Apsimon, Can. J. Chem., 1977, 55, 2813 CAS; H. Beierbeck and J. K. Saunders, Can. J. Chem., 1975, 53, 1307 CAS.
  7. For a similar 13C NMR based analysis of the stereochemistry of fused cyclohexane systems see: A. Batsanov, L. Chen, G. B. Gill and G. Pattenden, J. Chem. Soc., Perkin Trans. 1, 1996, 45 Search PubMed.
  8. For some novel polycyclisations using the Heck reaction leading to penta- and heptacycles see: T. Sighihara, C. Coperet, Z. Owczarczyk, L. S. Harding and E. Negishi, J. Am. Chem. Soc., 1994, 116, 7923 Search PubMed; B. M. Trost and Y. Shi, J. Am. Chem. Soc., 1993, 115, 9421 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.