Radical promoted cyclisations of trichloroacetamides with silyl enol ethers and enol acetates: the role of the hydride reagent [tris(trimethylsilyl)silane vs. tributylstannane]

(Note: The full text of this document is currently only available in the PDF Version )

Josefina Quirante, Carmen Escolano, Faïza Diaba and Josep Bonjoch


Abstract

Reactions between 1-(carbamoyl)dichloromethyl radicals and electron-rich alkenes acting as radical acceptors are reported for the first time. The intramolecular reaction of trichloroacetamides with silyl enol ethers gives ketones using (TMS)3SiH as the mediator, and alcohols when using Bu3SnH. The reaction with enol acetates gives acetates using either of the above hydride reagents. These radical processes have been applied to the synthesis of 2-azabicyclo[3.3.1]nonanes.


References

  1. For recent examples in natural product synthesis, see: (a) J. Quirante, C. Escolano, A. Merino and J. Bonjoch, J. Org. Chem., 1998, 63, 968 CrossRef CAS; (b) L. Boiteau, J. Boivin, A. Liard, B. Quiclet-Sire and S. Z. Zard, Angew. Chem., Int. Ed., 1998, 37, 1128 CrossRef CAS; (c) M. Ikeda, M. Hamada, T. Yamashita, F. Ikegami, T. Sato and H. Ishibashi, Synlett, 1998, 1246 CAS; (d) M. Ikeda, T. Sato and H. Ishibashi, Rev. Heteroatom Chem., 1998, 18, 169 Search PubMed.
  2. For some starting materials leading to a radical centre at the β-position to a nitrogen atom (3-azacarbon radicals) using the hydride method, see inter alia: S. J. Danishefsky and J. S. Panek, J. Am. Chem. Soc., 1987, 109, 917 Search PubMed; Y. Watanabe, Y. Ueno, C. Tanaka, M. Okawara and T. Endo, Tetrahedron Lett., 1987, 28, 3953 CrossRef CAS; G. Stork and R. Mah, Heterocycles, 1989, 28, 723 CrossRef CAS; H. Ishibashi, T. S. So, K. Okochi, T. Sato, N. Nakamura, H. Nakatani and M. Ikeda, J. Org. Chem., 1991, 56, 95 CrossRef CAS; P. F. Keusenkothen and M. B. Smith, Tetrahedron, 1992, 48, 2977 CrossRef CAS; M. Ishizaki, K. Kurihara, E. Tanazawa and O. Hoshino, J. Chem. Soc., Perkin Trans. 1, 1993, 101 CrossRef CAS; E. W. Della and A. M. Knill, J. Org. Chem., 1996, 61, 7529 RSC; A. F. Parsons and R. M. Pettifer, Tetrahedron Lett., 1997, 38, 5907 CrossRef CAS; V. Gupta, M. Besev and L. Engman, Tetrahedron Lett., 1998, 39, 2429 CrossRef CAS.
  3. For examples of the use of (alkoxy)methoxyalkenes as radical acceptors of 3-azaradicals, see S. Knapp and F. S. Gibson, J. Org. Chem., 1992, 57, 4802 Search PubMed.
  4. (a) For this intermolecular process mediated by a tin hydride, see: B. Giese, H. Horler and M. Leising, Chem. Ber., 1986, 119, 444 Search PubMed; P. Renaud, Tetrahedron Lett., 1990, 31, 4601 CAS; (b) for addition of acyl radicals to silyl enol ethers, see: D. L. Boger and R. J. Mathvink, J. Org. Chem., 1992, 57, 1429 Search PubMed.
  5. For procedures to promote additions of electrophilic radicals to silyl enol ethers other than the hydride method, see: (a) an oxidative process, E. Baciocchi, A. Casu and R. Ruzziconi, Synlett, 1990, 679 Search PubMed; Y. Kohno and K. Narasaka, Chem. Lett., 1993, 1689 CrossRef CAS; (b) the atom transfer method, K. Miura, Y. Takeyama, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn., 1991, 64, 1542 Search PubMed; (c) thiol-catalysed addition of aldehydes, H.-S. Dang and B. P. Roberts, Chem. Commun., 1996, 2201 Search PubMed; (d) photo-irradation, M. Mitani and H. Sakata, Chem. Commun., 1998, 1877 Search PubMed.
  6. It has been noted that nucleophilic alkyl radicals do not react with silyl enol ethers: H. Urabe and I. Kuwajima, Tetrahedron Lett., 1986, 27, 1355 Search PubMed.
  7. For a review on radical cyclisation reactions, see: B. Giese, B. Kopping, T. Göbel, J. Dickhaut, G. Thoma, K. J. Kulicke and F. Frach, Org. React., 1996, 48, 301 Search PubMed.
  8. For references on (a) carbocyclic series, see ref. 6; (b) 1-oxa-2-silacyclohexanes, see R. D. Walkup, R. R. Kane and N. U. Obeyesekere, Tetrahedron Lett., 1990, 31, 1531 Search PubMed for related heterocyclic compounds: J. H. Hutchinson, T. S. Daynard and J. W. Gillard, Tetrahedron Lett., 1991, 32, 573 CrossRef CAS; A. G. Myers, D. Y. Gin and D. H. Rogers, J. Am. Chem. Soc., 1993, 115, 2036 Search PubMed.
  9. (a) For cyclisations of alkyl radicals with enol ethers, see: A. L. J. Beckwith and D. H. Roberts, J. Am. Chem. Soc., 1986, 108, 5893 Search PubMed; T. V. RajanBabu, T. Fukunaga and G. S. Reddy, J. Am. Chem. Soc., 1989, 111, 1759 CrossRef CAS; J.-C. Lopez and B. Fraser-Reid, J. Am. Chem. Soc., 1989, 111, 3450 CrossRef CAS; J. Marco-Contelles and B. Sánchez, J. Org. Chem., 1993, 58, 4293 CrossRef CAS; C. Imboden, T. Bourquard, O. Corminboeuf, P. Renaud, K. Schenk and M. Zahouily, Tetrahedron Lett., 1999, 40, 495 CrossRef CAS; (b) for cyclisations with aryl radicals, see: S. Atarashi, J.-K. Choi, D.-C. Ha, D. J. Hart, D. Kuzmich, C.-S. Lee, S. Ramesh and S. C. Wu, J. Am. Chem. Soc., 1997, 119, 6226 Search PubMed; (c) for cyclisations with acyl radicals, see ref. 4b.
  10. (a) For cyclisations of stabilized radicals with enol acetates, see: F. Barth and C. O-Yang, Tetrahedron Lett., 1991, 32, 5873 Search PubMed; (b) for cyclisations from aryl radicals, see: S. A. Ahmad-Junan and D. A. Whiting, J. Chem. Soc., Chem. Commun., 1988, 1160 Search PubMed.
  11. For hydride reagent promoted radical cyclisations of trichloroacetamides with alkenes with an electron-withdrawing substituent, see: (a) Y. Hirai, A. Hagiwara, T. Terada and T. Yamazaki, Chem. Lett., 1987, 2417 CAS; (b) A. F. Parsons and R. J. K. Taylor, J. Chem. Soc., Perkin Trans. 1, 1994, 1945 RSC; (c) K. Goodall and A. F. Parsons, Tetrahedron, 1996, 52, 6739 CrossRef CAS; (d) J. Quirante, C. Escolano, M. Massot and J. Bonjoch, Tetrahedron, 1997, 53, 1391 CrossRef CAS.
  12. For hydride reagent promoted radical cyclisations of trichloroacetamides with non-activated alkenes, see: (a) H. Nagashima, N. Ozaki, M. Ishii, K. Seki, M. Washiyama and K. Itoh, J. Org. Chem., 1993, 58, 464 CrossRef; (b) J. Quirante, C. Escolano, F. Diaba and J. Bonjoch, Heterocycles, 1999, 50, in the press Search PubMed.
  13. For hydride reagent promoted radical cyclisations of N-vinylic trichloroacetamides, see: H. Ishibashi, M. Higuchi, M. Ohba and M. Ikeda, Tetrahedron Lett., 1998, 39, 75 Search PubMed; M. Ikeda, S. Ohtani, T. Yamamoto, T. Sato and H. Ishibashi, J. Chem. Soc., Perkin Trans 1, 1998, 1763 CrossRef CAS.
  14. For a preliminary report of part of this work, see: J. Quirante, C. Escolano, L. Costejà and J. Bonjoch, Tetrahedron Lett., 1997, 38, 6901 Search PubMed.
  15. (a) Y.-W. Guo, A. Madaio, G. Scognamiglio and E. Trivellone, Tetrahedron, 1996, 52, 8341 CrossRef CAS; (b) R. Downham, F. W. Ng and L. E. Overman, J. Org. Chem., 1998, 63, 8096 CrossRef CAS.
  16. (a) F. Kong, R. J. Andersen and T. M. Allen, J. Am. Chem. Soc., 1994, 116, 6007 CrossRef CAS; (b) N. Matzanke, R. J. Gregg and S. M. Weinreb, J. Org. Chem., 1997, 62, 1920 CrossRef CAS.
  17. K. Sakamoto, E. Tsujii, F. Abe, T. Nakanishi, M. Yamashita, N. Shigematsu, S. Izumi and M. Okuhara, J. Antibiot., 1996, 49, 37 CAS.
  18. R. D. Miller and D. R. McKean, Synthesis, 1979, 730 CrossRef CAS.
  19. For a related process catalysed by a ruthenium(II) phosphine complex, see: N. Kamigata, K. Udodaira and T. Shimizu, J. Chem. Soc., Perkin Trans. 1, 1997, 783 Search PubMed.
  20. The great strength of the Si–Cl bond in Me3SiCl (112 kcal mol–1) can drive the process.
  21. C. Chatgilialoglu, J. Dickhaut and B. Giese, J. Org. Chem., 1991, 56, 6399 CrossRef CAS.
  22. Attempts to reduce ketone 3 were also unsuccessful when working with TBTH–AIBN, alone, with tributylchlorostannane or with trimethylchlorosilane in the reaction medium.
  23. When the ratio of TBTH is low (see Table 1) a significant percentatge of ketones 4 and 5 are isolated, suggesting that a competitive mechanism, similar to that depicted in Scheme 2, is also operating.
  24. (a) The direct formation of alcohols in reactions promoted by TBTH and silyl enol ethers has not previously been noted, see refs. 4 and 8; (b) for a simple reduction of α-silyloxyl radicals by TBTH, see: S.-Y. Chang, W.-T. Jiaang, C.-D. Cherng, K.-H. Tang, C.-H. Huang and Y.-M. Tsai, J. Org. Chem., 1997, 62, 9089 Search PubMed.
  25. D. P. Curran, N. A. Porte and B. Giese, Stereochemistry of Radical Reactions, VCH, Weinheim, 1996 Search PubMed; W. Damm, B. Giese, J. Hartung, T. Hasskerl, K. N. Houk, O. Hüter and H. Zipse, J. Am. Chem. Soc., 1992, 114, 4067 Search PubMed.
  26. J. Burfeindt, M. Patz, M. Müller and H. Mayr, J. Am. Chem. Soc., 1998, 120, 3629 CrossRef CAS and refs. therein.
  27. D. P. Curran, Synlett, 1991, 63 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.