Dispiroketals in synthesis. Part 25.1 Further reactions of dispiroketal protected glycolate to afford optically active 1,2,3,4-tetraols

(Note: The full text of this document is currently only available in the PDF Version )

Morifumi Fujita, Dramane Lainé and Steven V. Ley


Abstract

Glycolic acid can be converted to optically active 1,2,3,4-tetraols using a dispiroketal unit as a protecting group and chiral auxiliary. Aldol reactions of dispiroketal protected glycolate with aldehydes afford one diastereoisomer preferentially with two newly formed stereogenic centres. To extend the polyol chain, the carbonyl group of the aldol product is converted to a vinyl ether by the Tebbe reagent after protection of the free alcohol. A subsequent hydroboration–oxidation protocol affords the dispiroketal protected tetraol. The final deprotection of the tetraol occurs selectively without epimerisation or migration of the silyloxy protecting groups.


References

  1. Dispiroketals in synthesis. Part 24: D. Lainé, M. Fujita and S. V. Ley, J. Chem Soc., Perkin Trans. 1, 1999, 1639 Search PubMed .
  2. P. M. Collins and R. J. Ferrier, Monosaccharides, John Wiley & Sons, Chichester, 1995 Search PubMed .
  3. Y. Hirata, D. Uemura, K. Ueda and S. Takano, Pure Appl. Chem., 1979, 51, 1875 CrossRef CAS ; D. Uemura, K. Ueda, Y. Hirata, H. Naoki and T. Iwashita, Tetrahedron Lett., 1981, 22, 1909, 2781 ; P. J. Scheuer and R. E. Moore, Science, 1971, 172, 495 ; R. E. Moore and G. Bartolini, J. Am. Chem. Soc., 1981, 103, 2491 CrossRef CAS .
  4. N. Minami, S. S. Ko and Y. Kishi, J. Am. Chem. Soc., 1982, 104, 1109 CrossRef CAS ; A. W. M. Lee, V. S. Martin, S. Masamune, K. B. Sharpless and F. J. Walker, J. Am. Chem. Soc., 1982, 104, 3315 CrossRef ; S. Y. Ko, A. W. M. Lee, S. Masamune, L. A. Reed, III, K. B. Sharpless and F. J. Walker, Science, 1983, 220, 949 CAS .
  5. For a comprehensive review of dispiroketal chemistry see: S. V. Ley, R. Downham, P. J. Edwards, J. E. Innes and M. Woods, Contemp. Org. Synth., 1995, 2, 365 Search PubMed .
  6. (a) S. V. Ley, S. Mio and B. Meseguer, Synlett, 1996, 787 CrossRef CAS ; (b) S. V. Ley and S. Mio, Synlett, 1996, 789 CrossRef CAS ; (c) S. V. Ley, S. Mio and B. Meseguer, Synlett, 1996, 791 CrossRef CAS .
  7. N. L. Douglas, S. V. Ley, U. Lücking and S. L. Warriner, J. Chem. Soc., Perkin Trans. 1, 1998, 51 RSC ; G.-J. Boons, P. Grice, R. Leslie, S. V. Ley and L. L. Yeung, Tetrahedron Lett., 1993, 34, 8523 CrossRef CAS .
  8. B. C. B. Bezuidenhoudt, G. H. Castle and S. V. Ley, Tetrahedron Lett., 1994, 35, 7447 CrossRef CAS ; B. C. B. Bezuidenhoudt, G. H. Castle, J. V. Geden and S. V. Ley, Tetrahedron Lett., 1994, 35, 7451 CrossRef CAS ; G. H. Castle and S. V. Ley, Tetrahedron Lett., 1994, 35, 7455 CrossRef CAS .
  9. In referring to diastereoisomers obtained from reaction of non-chiral starting materials, their racemic nature is assumed and only one enantiomeric form is depicted in their formulae .
  10. G.-J. Boons, R. Downham, K. S. Kim, S. V. Ley and M. Woods, Tetrahedron, 1994, 50, 7157 CrossRef CAS .
  11. R. P. Linstead, L. N. Owen and R. F. Webb, J. Chem. Soc., 1953, 1218 RSC .
  12. J.-N. Denis, A. Correa and A. E. Greene, J. Org. Chem., 1990, 55, 1957 CrossRef CAS ; Z.-M. Wang, H. C. Kolb and K. B. Sharpless, J. Org. Chem., 1994, 59, 5104 CrossRef CAS .
  13. B. R. Matthews, W. R. Jackson, H. A. Jacobs and K. G. Watson, Aust. J. Chem., 1990, 43, 1195 CAS .
  14. During further studies of these aldol reactions, it was found that replacing DMPU by HMPA enhanced the nucleophilicity of the enolate of 18(antipode of 4). Under these conditions it was possible to carry out the reaction with pivalaldehyde and a single compound was isolated in 58% yield. The stereochemistry of this compound was not formally established but was predicted to be erythro according to the transition states shown in Scheme 2. (Graphic not included) .
  15. For a general review, see: J. Jurczak, S. Pikul and T. Bauer, Tetrahedron, 1986, 42, 447 Search PubMed .
  16. For a general review, see: S. Masamune, W. Choy, J. S. Petersen and L. R. Site, Angew. Chem., Int. Ed. Engl., 1985, 24, 1 Search PubMed .
  17. (a) C. H. Heathcock, C. T. White, J. J. Morrison and D. van Derveer, J. Org. Chem., 1981, 46, 1296 CrossRef CAS ; (b) C. H. Heathcock and C. T. White, J. Am. Chem. Soc., 1979, 101, 7076 CrossRef CAS ; (c) C. H. Heathcock, M. C. Pirrung, C. T. Buse, J. P. Hagan, S. D. Young and J. E. Sohn, J. Am. Chem. Soc., 1979, 101, 7077 CrossRef CAS .
  18. M. Chérest, H. Felkin and N. Prudent, Tetrahedron Lett., 1968, 2199 CrossRef CAS ; N. T. Anh, Top. Curr. Chem., 1980, 88, 145 .
  19. C. H. Heathcock, S. D. Young, J. P. Hagan, M. C. Pirrung, C. T. White and D. van Derveer, J. Org. Chem., 1980, 45, 3846 CrossRef CAS .
  20. M. T. Reetz, Angew. Chem., Int. Ed. Engl., 1984, 23, 556 CrossRef .
  21. Y. Senda, S. Kamiyama and S. Imaizumi, Tetrahedron, 1977, 33, 2933 CrossRef CAS .
  22. E. Baer and H. O. L. Fischer, J. Biol. Chem., 1939, 128, 463 CAS ; S. Hagen, T. Anthonsen and L. Kilaas, Tetrahedron, 1979, 35, 2583 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.