New modified nucleoside 5′-triphosphates: synthesis, properties towards DNA polymerases, stability in blood serum and antiviral activity

(Note: The full text of this document is currently only available in the PDF Version )

Alexander V. Shipitsin, Lyubov S. Victorova, Elena A. Shirokova, Natalya B. Dyatkina, Lyudmila E. Goryunova, Robert Sh. Beabealashvilli, Chris J. Hamilton, Stanley M. Roberts and Alexander Krayevsky


Abstract

A series of new nucleoside 5′-triphosphate mimetics, 2, 3, 5, 6, 8–10, modified at the glycone and all three phosphate residues, have been synthesised and studied. These compounds only bear the enzymatically labile anhydride bond between the α and β phosphorus atoms. The preparative chemistry involved the preparation of phosphonic salts 30, 31 and 32 and coupling of these species to the morpholidate 33. The mechanism of formation of some of the intermediates ‘en route’ to 27 and 28 is discussed. All of the target compounds demonstrated high stability in human blood serum with half lives towards hydrolysis of up to 4.5 days. Some of these nucleoside triphosphonates have been shown to be selective inhibitors of DNA synthesis catalysed by retroviral reverse transcriptases and terminal deoxynucleotidyl transferases. They inhibited replication of the artificial virus containing Moloney murine leukemia virus reverse transcriptase in infected cell culture, probably due to the inhibition of a reverse transcription step of a genomic RNA. Compared to the triphosphonates, the corresponding monophosphonates demonstrated decreased antiviral activity by 1–2 orders of magnitude. This implies that the triphosphonates inhibit virus replication directly, rather than by a two-step mechanism based on their hydrolysis to the monophosphonates and subsequent intracellular diphosphorylation. Being totally independent of the enzymatic phosphorylation pathways of the host cell, the compounds under study may also be able to inhibit retrovirus reproduction both in kinase deficient cell lines and in the intercellular blood media.


References

  1. H. Zhang, G. Dornadula and R. Pomerantz, J. Virol., 1996, 70, 2809 CAS.
  2. A. A. Arzumanov, D. G. Semizarov, L. S. Victorova, N. B. Dyatkina and A. A. Krayevsky, J. Biol. Chem., 1996, 271, 24389 CrossRef CAS.
  3. L. S. Victorova, N. B. Dyatkina, D. J. Mozzherin, A. M. Atrazhev, A. A. Krayevsky and M. K. Kukhanova, Nucleic Acids Res., 1992, 20, 783 CAS.
  4. N. B. Dyatkina, A. A. Arzumanov, L. S. Victorova, M. K. Kukhanova and A. A. Krayevsky, Nucleosides Nucleotides, 1995, 14, 91 CAS.
  5. V. Merlo, S. M. Roberts, R. Storer and R. C. Bethell, J. Chem. Soc., Perkin Trans. 1, 1994, 1477 RSC.
  6. D. Coe, S. M. Roberts and R. Storer, J. Chem Soc., Perkin Trans. 1, 1992, 2695 RSC.
  7. J. Balzarini, P. Herdewijn, R. Pauwels, S. Broder and E. De Clercq, Biochem. Pharmacol., 1988, 37, 2395 CrossRef CAS.
  8. T. J. Kilesso, N. B. Tarussova, E. D. Atrazheva, M. K. Kukhanova, S. V. Shulenin, A. F. Bobkov, M. M. Garayev, G. A. Galegov and A. A. Krayevsky, Bioorg. Khim., 1990, 16, 531 Search PubMed.
  9. T. A. Rozovskaya, A. V. Tischenko, N. B. Tarussova, M. K. Kukhanova, A. A. Krayevsky and R. Sh. Beabealashvilli, Mol. Biol. Russian, 1993, 27, 1051 Search PubMed.
  10. L. Arabshahi, N. N. Khan, M. Butler, T. Noothy, N. C. Brown and G. E. Wright, Biochemistry, 1990, 29, 6820 CrossRef CAS.
  11. B. I. Martynov, E. A. Shirokova, M. V. Jasko, L. S. Victorova and A. A. Krayevsky, FEBS Lett., 1997, 410, 423 CrossRef CAS.
  12. E. A. Shirokova and N. B. Dyatkina, Collect. Czech. Chem. Commun., 1996, 61, S158 CAS.
  13. N. Dyatkina, E. Shirokova, F. Theil, S. M. Roberts and A. Krayevsky, Bioorg. Med. Chem. Lett., 1996, 6, 2639 CrossRef CAS.
  14. N. Dyatkina, F. Theil and M. von Janta Lipinski, Tetrahedron, 1995, 51, 761 CrossRef CAS.
  15. C. J. Hamilton, S. M. Roberts and A. Shipitsin, Chem. Commun., 1998, 1087 RSC.
  16. D. Burton and R. Flynn, J. Fluorine Chem., 1980, 15, 263 CrossRef CAS.
  17. The high electrophilic reactivity of the acylation products of 21, leading to the rapid formation of secondary products, has previously been reported; G. M. Blackburn, D. Brown, S. Martin and M. Parrat, J. Chem. Soc., Perkin Trans. 1, 1987, 181 Search PubMed.
  18. F. Westheimer, Acc. Chem. Res., 1968, 1, 70 CrossRef CAS.
  19. (a) E. Lightcap and P. Frey, J. Am. Chem. Soc., 1992, 114, 9750 CrossRef CAS; (b) J. Friedman, S. Freeman and J. Knowles, J. Am. Chem. Soc., 1988, 110, 1268 CrossRef CAS.
  20. (a) P. Cullis, R. Misra and D. Wilkins, J. Chem. Soc., Chem. Commun., 1987, 1594 RSC; (b) P. Cullis and R. Misra, J. Am. Chem. Soc., 1991, 113, 9679 CrossRef CAS; (c) S. Hamett and G. Lowe, J. Chem. Soc., Chem. Commun., 1987, 1416 RSC.
  21. (a) M. Harger, J. Chem. Soc., Perkin Trans. 2, 1991, 1057 RSC; (b) A. Gerrard and N. Hamer, J. Chem. Soc. (B), 1968, 539 RSC; (c) S. Freeman and M. Harger, J. Chem. Soc., Perkin Trans. 2, 1988, 82 Search PubMed; (d) S. Freeman and M. Harger, J. Chem. Soc., Perkin Trans. 1, 1988, 2737 RSC.
  22. M. Harger and B. Hurman, J. Chem. Soc., Chem. Commun., 1995, 1701 RSC.
  23. The synthesis of 18 using this procedure has previously been noted in the following paper: M. Obayashi, E. Ito, K. Matsui and K. Kondo, Tetrahedron Lett., 1982, 23, 2323 Search PubMed Full experimental details are reported herein as the experimental procedure was not described in the original paper and to our knowledge has not been published since. Characterisation data are available for 18 from reports of alternative preparations.16,35,41.
  24. V. Wittmann and C. H. Wong, J. Org. Chem., 1997, 62, 2144 CrossRef CAS.
  25. C. J. Hamilton, PhD Thesis, University of Exeter, 1998.
  26. D. G. Semizarov, L. S. Victorova, N. B. Dyatkina, M. von Janta Lipinski and A. Krayevsky, FEBS Lett., 1994, 354, 187 CrossRef CAS.
  27. A. Y. Shevelev, O. A. Deyanova, L. E. Goryunova, A. Y. Zhukova and R. Sh. Beabealashivilli, Mol. Biol. Russian, 1995, 29, 658 Search PubMed.
  28. P. Labataille, P. Pelicano, J.-P. Imbach and G. Gosselin, Bioorg. Med. Chem. Lett., 1995, 5, 2315 CrossRef CAS.
  29. G. R. J. Thatcher and A. S. Campbell, J. Org. Chem., 1993, 58, 2272 CrossRef CAS.
  30. A. A. Krayevsky, unpublished work.
  31. L. A. Alexandrova, A. J. Scoblov, M. V. Jasko, L. S. Victorova and A. A. Krayevsky, Nucleic Acids Res., 1998, 26, 778 CrossRef CAS.
  32. D. Y. Mozzherin, A. M. Atrazhev and M. K. Kukhanova, Mol. Biol. Russian, 1992, 26, 999 Search PubMed.
  33. T. A. Kolocheva and G. A. Nevinsky, Mol. Biol. Russian, 1993, 27, 1368 Search PubMed.
  34. A. V. Krayev, Mol. Biol. Russian, 1988, 22, 1164 Search PubMed.
  35. J. R. Sampson and O. Uhlenbeck, Proc. Natl. Acad. Sci. USA, 1988, 85, 1033 CAS.
  36. C. McKenna and P. Shen, J. Org. Chem., 1981, 46, 4573 CrossRef CAS.
  37. N. Lehming, J. Sartorius, M. Niemoller, G. Genenger, B. von Wilken-Bergmann and B. Muller Hill, EMBO J., 1987, 6, 3145 CAS.
  38. V. S. Prasolov and P. M. Chumakov, Mol. Biol. Russian, 1988, 22, 1371 Search PubMed.
  39. A. D. Miller and C. Buttimore, Mol. Cell Biol., 1986, 6, 2895 CAS.
  40. R. Mann, R. C. Milligan and D. Baltimore, Cell, 1983, 33, 153 CAS.
  41. J. R. Sanes, J. L. R. Rubenstein and J. F. Nicolas, EMBOJ., 1986, 5, 3133 CAS.