‘Hidden’ axial chirality as a stereodirecting element in reactions involving enol(ate) intermediates. Part 2.† Cyclisation reactions of methyl (4R)-3-(2-diazo-3-oxobutanoyl)-1,1-dioxo-1λ6,3- (and 1-oxo-1λ4,3-) thiazolidine-4-carboxylates

(Note: The full text of this document is currently only available in the PDF Version )

Michael J. Betts, Robin G. Pritchard, Anthony Schofield, Richard J. Stoodley and Shaheen Vohra


Abstract

Methyl (4R)-3-(2-diazo-3-oxobutanoyl)-1,1-dioxo-1λ6,3-thiazolidine-4-carboxylate 14 undergoes a base-induced cyclisation to give methyl (8aS[hair space])-3-acetyl-4,7,7-trioxo-1,4,6,7,8,8a-hexahydro-7λ6-[1,3]thiazolo[4,3-c][1,2,4]triazine-8a-carboxylate 15 in a state of high enantiomeric purity. Similar stereoselective cyclisations, proceeding with retention of configuration, are observed with methyl (1R,4R)- and (1S,4R)-3-(2-diazo-3-oxobutanoyl)-1-oxo-1λ4,3-thiazolidine-4-carboxylates 25 and 27 to give compounds 33 and 34. It is suggested that the cyclisation reactions proceed by way of planar ester enol(ate) intermediates which possess axial chirality, e.g. 35.

The bicyclic sulfone 15 and the bicyclic sulfoxides 33 and 34 are also produced by oxidation of methyl (8aS[hair space])-3-acetyl-4-oxo-1,4,8,8a-tetrahydro[1,3]thiazolo[4,3-c][1,2,4]triazine-8a-carboxylate 5 with m-chloroperoxybenzoic acid (in DMF in the case of the sulfone 15 and in CHCl3 in the case of the sulfoxides 33 and 34). The use of the oxidant in methanol or of hydrogen peroxide in formic acid leads to an oxidative deacetylation to give methyl (8aS)-3,4,7,7-tetraoxoperhydro-7λ6-[1,3]thiazolo[4,3-c][1,2,4]triazine-8a-carboxylate 17, the structure of which is established by an X-ray crystallographic analysis. The analysis reveals an interesting packing arrangement of the molecules in the crystal, attributable to an intermolecular H-bonding network. In particular, intermolecular H-bonding between the ester carbonyl oxygen atom and the amino hydrogen atom at position 1 provides a possible explanation for the shift of the ester carbonyl absorption to 1680 cm–1 in the solid-state IR spectrum of compound 17.


References

  1. B. Beagley, M. J. Betts, R. G. Pritchard, A. Schofield, R. J. Stoodley and S. Vohra, J. Chem. Soc., Perkin Trans. 1, 1993, 1761 RSC.
  2. T. J. Wallace, J. E. Hofmann and A. Schriesheim, J. Am. Chem. Soc., 1963, 85, 2739 CrossRef CAS.
  3. W. A. Nachtergaele and M. J. O. Anteunis, Bull. Soc. Chim. Belg., 1980, 89, 749 CAS.
  4. G. V. Kaiser, R. D. G. Cooper, R. E. Koehler, C. F. Murry, J. A. Webber, I. G. Wright and E. M. van Heyningen, J. Org. Chem., 1970, 35, 2430 CrossRef CAS.
  5. J. Drabowicz and S. Oae, Synthesis, 1977, 404 CrossRef CAS.
  6. T. Kawabata, T. Wirth, K. Yahiro, H. Suzuki and K. Fuji, J. Am. Chem. Soc., 1994, 116, 10809 CrossRef CAS.
  7. A. G. Brewster, C. S. Frampton, J. Jayatissa, M. B. Mitchell, R. J. Stoodley and S. Vohra, Chem. Commun., 1998, 299 RSC.
  8. C. J. Gilmore, J. Appl. Crystallogr., 1984, 17, 42 CrossRef CAS; P. T. Beurskens, Technical Report 1984/1, Crystallography Laboratory, Toernooiveld, 6525 Ed Nijmegen, Netherlands.
  9. D. T. Cromer and J. T. Waber, in International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. IV, Table 2.2.A Search PubMed.
  10. J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781 CrossRef.
  11. D. T. Cromer, in International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. IV, Table 2.3.1 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.