Elemental fluorine. Part 10.1 Selective fluorination of pyridine, quinoline and quinoxaline derivatives with fluorine–iodine mixtures

(Note: The full text of this document is currently only available in the PDF Version )

Richard D. Chambers, Mandy Parsons, Graham Sandford, Christopher J. Skinner, Malcolm J. Atherton and John S. Moilliet


Abstract

Selective fluorination of a range of pyridine and quinoline substrates to give corresponding 2-fluoro-derivatives can be readily achieved in high yield at room temperature using elemental fluorine–iodine mixtures. Reaction of fluorine with iodine forms, in situ, systems that function like sources of both iodonium and fluoride ions and fluorination of heterocyclic derivatives is suggested to proceed by fluoride ion attack on intermediate N-iodo-heterocyclic species. Quinoxaline derivatives react under similar conditions to give either the 2-fluoro- or 2,3-difluoro-quinoxaline derivatives depending on the ratio of fluorine passed through the solution. In related processes, pyridine can be alkoxylated upon reaction of an appropriate alcohol and fluorine.


References

  1. For Part 9, see R. D. Chambers and J. Hutchinson, J. Fluorine Chem., 1998, 92, 45 Search PubMed.
  2. E. Differding, W. Frick, R. W. Lang, P. Martin, C. Schmit, S. Veenstra and H. Greuter, Bull. Soc. Chim. Belg., 1990, 99, 647 CAS.
  3. M. J. Silvester, Aldrichim. Acta, 1991, 24, 31 Search PubMed.
  4. M. R. Grimmett, Adv. Heterocycl. Chem., 1993, 57, 291 CAS.
  5. M. R. Grimmett, Adv. Heterocycl. Chem., 1993, 58, 271 CAS.
  6. M. R. Grimmett, Adv. Heterocycl. Chem., 1994, 59, 246.
  7. M. J. Silvester, Adv. Heterocycl. Chem., 1994, 59, 1 CAS.
  8. D. F. Halpern and G. G. Vernice, in Chemistry of Organic Fluorine Compounds II, eds. M. Hudlicky and A. E. Pavlath, American Chemical Society, Washington D.C., 1995, p. 172 Search PubMed.
  9. M. M. Boudakian, in Chemistry of Organic Fluorine Compounds II, eds. M. Hudlicky and A. E. Pavlath, American Chemical Society, Washington D.C., 1995, p. 271 Search PubMed.
  10. A. Roe and G. F. Hawkins, J. Am. Chem. Soc., 1947, 69, 2443 CrossRef CAS.
  11. A. Roe and G. F. Hawkins, J. Am. Chem. Soc., 1949, 71, 1785 CrossRef CAS.
  12. Y. Uchibori, M. Umeno and H. Yoshioka, Heterocycles, 1992, 34, 1507 CrossRef CAS.
  13. J. Hamer, W. J. Link, A. Jurjevich and T. L. Vigo, Recl. Trav. Chim. Pays-Bas, 1962, 81, 1058 CAS.
  14. S. Stavber and M. Zupan, Tetrahedron Lett., 1990, 31, 775 CrossRef CAS.
  15. J. R. Ballinger, F. W. Teare, B. M. Bowen and E. S. Garnett, Electrochim. Acta, 1985, 30, 1075 CrossRef CAS.
  16. T. Umemoto and G. Tomizawa, J. Org. Chem., 1989, 54, 1726 CrossRef CAS.
  17. R. Filler, J. Fluorine Chem., 1986, 33, 361 CrossRef CAS.
  18. H. Meinert, Z. Chem, 1965, 5, 64 CAS.
  19. M. Van Der Puy, Tetrahedron Lett., 1987, 28, 255 CrossRef CAS.
  20. M. Van Der Puy and R. E. Eilbeck, U.S. Pat. Appl. 4,786,733 ( 1987); Chem. Abstr., 1989, 110, 212617w Search PubMed.
  21. R. D. Chambers, G. Sandford, M. E. Sparrowhawk and M. J. Atherton, J. Chem. Soc., Perkin Trans. 1., 1996, 1941 RSC.
  22. M. J. S. Dewar and J. Kelemen, J. Chem. Phys., 1968, 49, 499 CAS.
  23. H. McNab, J. Chem. Soc., Perkin Trans. 1., 1982, 357 RSC.
  24. A. S. Kiselyov and L. Strekowski, Synth. Commun., 1994, 24, 2387 CAS.
  25. J. Hutchinson and G. Sandford, Top. Curr. Chem., 1997, 193, 1 CAS.
  26. G. Thomas, Org. Mag. Reson., 1970, 2, 503 Search PubMed.
  27. F. Marsais, A. Godard and G. Quenguiner, J. Heterocycl. Chem., 1989, 26, 1589 CAS.
  28. Bayer. Co. U.K. Pat. Appl. 845,062 ( 1960); Chem. Abstr., 1961, 55, 5544a Search PubMed.
  29. W. Cavagnol, J. Am. Chem. Soc., 1947, 69, 795 CrossRef.
  30. H. Takai, A. Odani and Y. Sasaki, Chem. Pharm. Bull., 1978, 26, 1672 CAS.
  31. J. K. Landquist, J. Chem. Soc., 1953, 2816 RSC.
  32. S. J. Yan, W. H. Burton, P. Chen and C. C. Cheng, J. Heterocycl. Chem., 1978, 15, 297 CAS.
  33. N. Kornblum and G. P. Coffey, J. Org. Chem., 1966, 31, 3447 CAS.
  34. D. Hebel and S. Rozen, J. Org. Chem., 1991, 56, 6298 CrossRef CAS.